Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA.
Phys Chem Chem Phys. 2013 Sep 28;15(36):14868-72. doi: 10.1039/c3cp51035b.
The application of two-photon activation of photoactivatable fluorescent proteins is limited by a lack of information about two-photon activation rates. Here we present rates for the commonly used photoactivatable proteins PAmCherry, PAmKate and PA-GFP at different wavelengths using a novel method that allows us to determine the two-photon activation rates directly, independent of any reference data, with microscopic sample volumes. We show that PAmCherry features the highest rates of the tested proteins at 700 nm activation wavelength followed by PAmKate. Towards longer wavelengths, two-photon activation rates decrease for all three proteins. For PAmCherry, our data contradicts an activation model relying solely on two-photon activation and suggests additional activation pathways requiring at least two absorption steps. Our method is readily expandable to other photoactivatable fluorescent molecules. The presented results allow optimization of experimental conditions in spectroscopic and imaging techniques such as super-resolution fluorescence microscopy.
双光子激活光激活荧光蛋白的应用受到缺乏双光子激活速率信息的限制。在这里,我们使用一种新方法,在不同波长下展示了常用的光激活蛋白 PAmCherry、PAmKate 和 PA-GFP 的速率,该方法允许我们直接确定双光子激活速率,而无需任何参考数据,且只需使用显微镜样本量即可。我们表明,在 700nm 激活波长下,PAmCherry 的速率最高,其次是 PAmKate。对于更长的波长,所有三种蛋白质的双光子激活速率都降低。对于 PAmCherry,我们的数据与仅依赖双光子激活的激活模型相矛盾,并表明需要至少两个吸收步骤的其他激活途径。我们的方法很容易扩展到其他光激活荧光分子。所呈现的结果允许优化光谱和成像技术(如超分辨率荧光显微镜)中的实验条件。