Suppr超能文献

用于视网膜假体的光电二极管电路。

Photodiode circuits for retinal prostheses.

出版信息

IEEE Trans Biomed Circuits Syst. 2011 Oct;5(5):468-80. doi: 10.1109/TBCAS.2011.2144980.

Abstract

Photodiode circuits show promise for the development of high-resolution retinal prostheses. While several of these systems have been constructed and some even implanted in humans, existing descriptions of the complex optoelectronic interaction between light, photodiode, and the electrode/electrolyte load are limited. This study examines this interaction in depth with theoretical calculations and experimental measurements. Actively biased photoconductive and passive photovoltaic circuits are investigated, with the photovoltaic circuits consisting of one or more diodes connected in series, and the photoconductive circuits consisting of a single diode in series with a pulsed bias voltage. Circuit behavior and charge injection levels were markedly different for platinum and sputtered iridium-oxide film (SIROF) electrodes. Photovoltaic circuits were able to deliver 0.038 mC/cm(2) (0.75 nC/phase) per photodiode with 50- μm platinum electrodes, and 0.54-mC/cm(2) (11 nC/phase) per photodiode with 50-μ m SIROF electrodes driven with 0.5-ms pulses of light at 25 Hz. The same pulses applied to photoconductive circuits with the same electrodes were able to deliver charge injections as high as 0.38 and 7.6 mC/cm(2) (7.5 and 150 nC/phase), respectively. We demonstrate photovoltaic stimulation of rabbit retina in-vitro, with 0.5-ms pulses of 905-nm light using peak irradiance of 1 mW/mm(2). Based on the experimental data, we derive electrochemical and optical safety limits for pixel density and charge injection in various circuits. While photoconductive circuits offer smaller pixels, photovoltaic systems do not require an external bias voltage. Both classes of circuits show promise for the development of high-resolution optoelectronic retinal prostheses.

摘要

光电二极管电路在高分辨率视网膜假体的开发中显示出巨大的潜力。虽然已经构建了其中的几个系统,甚至将一些系统植入了人体,但目前对于光、光电二极管和电极/电解质负载之间复杂的光电相互作用的描述还很有限。本研究通过理论计算和实验测量深入研究了这种相互作用。本文研究了两种电路:主动偏置光电导电路和被动光伏电路,光伏电路由一个或多个串联二极管组成,光电导电路由一个串联的二极管和一个脉冲偏置电压组成。铂电极和溅射氧化铱膜(SIROF)电极的光电导电路和光伏电路的行为和注入电荷量明显不同。对于 50-μm 厚的铂电极,光伏电路每一个光电二极管可提供 0.038 mC/cm(2)(0.75 nC/相)的电荷量,对于 50-μm 厚的 SIROF 电极,每一个光电二极管可提供 0.54-mC/cm(2)(11 nC/相)的电荷量,施加在光电二极管上的光脉冲为 50-μs,频率为 25 Hz。对于相同的电极,相同的光脉冲施加在光电导电路上,可提供高达 0.38 和 0.76 mC/cm(2)(7.5 和 150 nC/相)的电荷量。我们在体外兔视网膜中演示了光伏刺激,使用峰值辐照度为 1 mW/mm(2)的 905-nm 光,光脉冲宽度为 0.5ms。根据实验数据,我们得出了各种电路的像素密度和注入电荷量的电化学和光学安全限制。虽然光电导电路提供了更小的像素,但光伏系统不需要外部偏置电压。这两种电路都为高分辨率光电视网膜假体的开发提供了前景。

相似文献

1
Photodiode circuits for retinal prostheses.
IEEE Trans Biomed Circuits Syst. 2011 Oct;5(5):468-80. doi: 10.1109/TBCAS.2011.2144980.
2
Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide.
J Neurosci Methods. 2010 Jan 30;186(1):8-17. doi: 10.1016/j.jneumeth.2009.10.016. Epub 2009 Oct 28.
3
Contribution of oxygen reduction to charge injection on platinum and sputtered iridium oxide neural stimulation electrodes.
IEEE Trans Biomed Eng. 2010 Sep;57(9):2313-21. doi: 10.1109/TBME.2010.2050690. Epub 2010 May 27.
4
Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.
IEEE Trans Biomed Circuits Syst. 2016 Feb;10(1):85-97. doi: 10.1109/TBCAS.2014.2376528. Epub 2015 Jan 23.
5
Photovoltaic retinal prosthesis: implant fabrication and performance.
J Neural Eng. 2012 Aug;9(4):046014. doi: 10.1088/1741-2560/9/4/046014. Epub 2012 Jul 12.
6
In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
Biomed Mater. 2010 Feb;5(1):15007. doi: 10.1088/1748-6041/5/1/015007. Epub 2010 Feb 3.
7
Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:7147-50. doi: 10.1109/IEMBS.2009.5335359.
8
Vertical-junction photodiodes for smaller pixels in retinal prostheses.
J Neural Eng. 2021 Mar 16;18(3). doi: 10.1088/1741-2552/abe6b8.
9
High-charge-capacity sputtered iridium oxide neural stimulation electrodes deposited using water vapor as a reactive plasma constituent.
J Biomed Mater Res B Appl Biomater. 2020 Apr;108(3):880-891. doi: 10.1002/jbm.b.34442. Epub 2019 Jul 28.
10
Charge injection characteristics of sputtered ruthenium oxide electrodes for neural stimulation and recording.
J Biomed Mater Res B Appl Biomater. 2022 Jan;110(1):229-238. doi: 10.1002/jbm.b.34906. Epub 2021 Jul 14.

引用本文的文献

1
An Optical Coherence Tomography-Based Measure as an Independent Estimate of Retinal Function in Retinitis Pigmentosa.
Diagnostics (Basel). 2023 Nov 24;13(23):3521. doi: 10.3390/diagnostics13233521.
2
Emerging trends in the development of flexible optrode arrays for electrophysiology.
APL Bioeng. 2023 Sep 7;7(3):031503. doi: 10.1063/5.0153753. eCollection 2023 Sep.
3
PRIMA subretinal wireless photovoltaic microchip implantation in non-human primate and feline models.
PLoS One. 2020 Apr 8;15(4):e0230713. doi: 10.1371/journal.pone.0230713. eCollection 2020.
4
Inorganic semiconductor biointerfaces.
Nat Rev Mater. 2018 Dec;3(12):473-490. doi: 10.1038/s41578-018-0062-3. Epub 2018 Nov 22.
5
Advances in retinal prosthesis systems.
Ther Adv Ophthalmol. 2019 Jan 17;11:2515841418817501. doi: 10.1177/2515841418817501. eCollection 2019 Jan-Dec.
6
Optimization of return electrodes in neurostimulating arrays.
J Neural Eng. 2016 Jun;13(3):036010. doi: 10.1088/1741-2560/13/3/036010. Epub 2016 Apr 21.
7
Photovoltaic restoration of sight with high visual acuity.
Nat Med. 2015 May;21(5):476-82. doi: 10.1038/nm.3851. Epub 2015 Apr 27.
8
Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.
IEEE Trans Biomed Circuits Syst. 2016 Feb;10(1):85-97. doi: 10.1109/TBCAS.2014.2376528. Epub 2015 Jan 23.
9
Cortical magnification plus cortical plasticity equals vision?
Vision Res. 2015 Jun;111(Pt B):161-9. doi: 10.1016/j.visres.2014.10.002. Epub 2014 Oct 16.
10
Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration.
Vision Res. 2015 Jun;111(Pt B):142-8. doi: 10.1016/j.visres.2014.09.007. Epub 2014 Sep 26.

本文引用的文献

1
Subretinal electronic chips allow blind patients to read letters and combine them to words.
Proc Biol Sci. 2011 May 22;278(1711):1489-97. doi: 10.1098/rspb.2010.1747. Epub 2010 Nov 3.
2
In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
Biomed Mater. 2010 Feb;5(1):15007. doi: 10.1088/1748-6041/5/1/015007. Epub 2010 Feb 3.
3
Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide.
J Neurosci Methods. 2010 Jan 30;186(1):8-17. doi: 10.1016/j.jneumeth.2009.10.016. Epub 2009 Oct 28.
4
Direct activation and temporal response properties of rabbit retinal ganglion cells following subretinal stimulation.
J Neurophysiol. 2009 Nov;102(5):2982-93. doi: 10.1152/jn.00545.2009. Epub 2009 Sep 9.
6
High-resolution electrical stimulation of primate retina for epiretinal implant design.
J Neurosci. 2008 Apr 23;28(17):4446-56. doi: 10.1523/JNEUROSCI.5138-07.2008.
7
In vitro and in vivo charge capacity of AIROF microelectrodes.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:886-9. doi: 10.1109/IEMBS.2006.259869.
8
In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:882-5. doi: 10.1109/IEMBS.2006.259654.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验