Flores Thomas, Goetz Georges, Lei Xin, Palanker Daniel
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
J Neural Eng. 2016 Jun;13(3):036010. doi: 10.1088/1741-2560/13/3/036010. Epub 2016 Apr 21.
High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence.
To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation.
Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation.
Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.
高分辨率视觉假体需要具有密集刺激阵列,且各电极能进行局部输入。我们研究了多电极阵列在电解质中产生的电场,以确定返回电极的最佳配置和激活顺序。
为了确定计算电解质中电场的边界条件,我们使用带有交错返回电极的多电极阵列等效电路评估了电流动态。然后将由等效电路得出的两种不同边界条件下建模的电场与电解质中电势的测量结果进行比较。为了评估返回电极配置对视网膜刺激的影响,我们使用神经网络介导刺激模型将计算出的电场转换为视网膜反应。
电容性电极 - 电解质界面处的电流会随时间重新分布,因此边界条件从脉冲开始时的等势面转变为稳态下的均匀电流密度。实验测量证实,在稳态下,边界条件对应于电极表面的均匀电流密度。与具有公共远程返回电极的阵列相比,具有局部返回电极的阵列具有更好的场限制,并且可以引发更强的网络介导的视网膜反应。连接局部返回电极可增加场穿透深度并允许减小返回电极面积。在大型单极阵列中按顺序激活像素可减少电串扰并提高图案刺激的对比度。
多电极阵列的精确建模有助于优化电极配置,以最大化视网膜假体的空间分辨率、对比度和动态范围。