Suppr超能文献

神经刺激阵列中返回电极的优化

Optimization of return electrodes in neurostimulating arrays.

作者信息

Flores Thomas, Goetz Georges, Lei Xin, Palanker Daniel

机构信息

Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

出版信息

J Neural Eng. 2016 Jun;13(3):036010. doi: 10.1088/1741-2560/13/3/036010. Epub 2016 Apr 21.

Abstract

OBJECTIVE

High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence.

APPROACH

To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation.

MAIN RESULTS

Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation.

SIGNIFICANCE

Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.

摘要

目的

高分辨率视觉假体需要具有密集刺激阵列,且各电极能进行局部输入。我们研究了多电极阵列在电解质中产生的电场,以确定返回电极的最佳配置和激活顺序。

方法

为了确定计算电解质中电场的边界条件,我们使用带有交错返回电极的多电极阵列等效电路评估了电流动态。然后将由等效电路得出的两种不同边界条件下建模的电场与电解质中电势的测量结果进行比较。为了评估返回电极配置对视网膜刺激的影响,我们使用神经网络介导刺激模型将计算出的电场转换为视网膜反应。

主要结果

电容性电极 - 电解质界面处的电流会随时间重新分布,因此边界条件从脉冲开始时的等势面转变为稳态下的均匀电流密度。实验测量证实,在稳态下,边界条件对应于电极表面的均匀电流密度。与具有公共远程返回电极的阵列相比,具有局部返回电极的阵列具有更好的场限制,并且可以引发更强的网络介导的视网膜反应。连接局部返回电极可增加场穿透深度并允许减小返回电极面积。在大型单极阵列中按顺序激活像素可减少电串扰并提高图案刺激的对比度。

意义

多电极阵列的精确建模有助于优化电极配置,以最大化视网膜假体的空间分辨率、对比度和动态范围。

相似文献

1
Optimization of return electrodes in neurostimulating arrays.
J Neural Eng. 2016 Jun;13(3):036010. doi: 10.1088/1741-2560/13/3/036010. Epub 2016 Apr 21.
2
Three-dimensional electro-neural interfaces electroplated on subretinal prostheses.
J Neural Eng. 2024 Feb 23;21(1):016030. doi: 10.1088/1741-2552/ad2a37.
3
Performance optimization of current focusing and virtual electrode strategies in retinal implants.
Comput Methods Programs Biomed. 2014 Nov;117(2):334-42. doi: 10.1016/j.cmpb.2014.06.012. Epub 2014 Jun 28.
5
Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation.
J Neural Eng. 2011 Aug;8(4):046020. doi: 10.1088/1741-2560/8/4/046020. Epub 2011 Jun 23.
6
Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration.
J Neural Eng. 2013 Jun;10(3):036013. doi: 10.1088/1741-2560/10/3/036013. Epub 2013 Apr 23.
7
Spatially patterned electrical stimulation to enhance resolution of retinal prostheses.
J Neurosci. 2014 Apr 2;34(14):4871-81. doi: 10.1523/JNEUROSCI.2882-13.2014.
8
Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons.
J Neural Eng. 2018 Jun;15(3):036011. doi: 10.1088/1741-2552/aaac39. Epub 2018 Feb 1.
9
Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants.
J Neural Eng. 2011 Aug;8(4):046016. doi: 10.1088/1741-2560/8/4/046016. Epub 2011 Jun 15.
10
Epiretinal stimulation with local returns enhances selectivity at cellular resolution.
J Neural Eng. 2019 Apr;16(2):025001. doi: 10.1088/1741-2552/aaeef1. Epub 2018 Nov 7.

引用本文的文献

1
Ultrathin rubbery bio-optoelectronic stimulators for untethered cardiac stimulation.
Sci Adv. 2024 Dec 6;10(49):eadq5061. doi: 10.1126/sciadv.adq5061.
2
Focal stimulation of retinal ganglion cells using subretinal 3D microelectrodes with peripheral electrodes of opposite current.
Biomed Eng Lett. 2023 Dec 26;14(2):355-365. doi: 10.1007/s13534-023-00342-3. eCollection 2024 Mar.
3
Electronic Retinal Prostheses.
Cold Spring Harb Perspect Med. 2023 Aug 1;13(8):a041525. doi: 10.1101/cshperspect.a041525.
4
Photovoltaic implant simulator reveals resolution limits in subretinal prosthesis.
J Neural Eng. 2022 Sep 27;19(5). doi: 10.1088/1741-2552/ac8ed8.
5
Evaluating Current Density Modeling of Non-Invasive Eye and Brain Electrical Stimulation Using Phosphene Thresholds.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:2133-2141. doi: 10.1109/TNSRE.2021.3120148. Epub 2021 Oct 28.
6
Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces.
Nat Nanotechnol. 2021 Feb;16(2):206-213. doi: 10.1038/s41565-020-00805-z. Epub 2020 Dec 7.
7
Stimulation Strategies for Improving the Resolution of Retinal Prostheses.
Front Neurosci. 2020 Mar 26;14:262. doi: 10.3389/fnins.2020.00262. eCollection 2020.
8
Development of visual Neuroprostheses: trends and challenges.
Bioelectron Med. 2018 Aug 13;4:12. doi: 10.1186/s42234-018-0013-8. eCollection 2018.
9
Spatiotemporal integration of visual stimuli and its relevance to the use of a divisional power supply scheme for retinal prosthesis.
PLoS One. 2020 Feb 21;15(2):e0228861. doi: 10.1371/journal.pone.0228861. eCollection 2020.
10
Vertically integrated photo junction-field-effect transistor pixels for retinal prosthesis.
Biomed Opt Express. 2019 Dec 4;11(1):55-67. doi: 10.1364/BOE.11.000055. eCollection 2020 Jan 1.

本文引用的文献

1
The Effect of Electric Cross-Talk in Retinal Neurostimulation.
Invest Ophthalmol Vis Sci. 2016 Mar;57(3):1031-7. doi: 10.1167/iovs.15-18400.
2
Contrast Sensitivity With a Subretinal Prosthesis and Implications for Efficient Delivery of Visual Information.
Invest Ophthalmol Vis Sci. 2015 Nov;56(12):7186-94. doi: 10.1167/iovs.15-17566.
3
Retinal prostheses: progress toward the next generation implants.
Front Neurosci. 2015 Aug 20;9:290. doi: 10.3389/fnins.2015.00290. eCollection 2015.
4
Development of Animal Models of Local Retinal Degeneration.
Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4644-52. doi: 10.1167/iovs.14-16011.
5
Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind.
Ophthalmology. 2015 Aug;122(8):1547-54. doi: 10.1016/j.ophtha.2015.04.032. Epub 2015 Jul 8.
6
Photovoltaic restoration of sight with high visual acuity.
Nat Med. 2015 May;21(5):476-82. doi: 10.1038/nm.3851. Epub 2015 Apr 27.
7
The unsteady eye: an information-processing stage, not a bug.
Trends Neurosci. 2015 Apr;38(4):195-206. doi: 10.1016/j.tins.2015.01.005. Epub 2015 Feb 16.
8
Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.
IEEE Trans Biomed Circuits Syst. 2016 Feb;10(1):85-97. doi: 10.1109/TBCAS.2014.2376528. Epub 2015 Jan 23.
9
Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration.
Vision Res. 2015 Jun;111(Pt B):142-8. doi: 10.1016/j.visres.2014.09.007. Epub 2014 Sep 26.
10
High-fidelity reproduction of spatiotemporal visual signals for retinal prosthesis.
Neuron. 2014 Jul 2;83(1):87-92. doi: 10.1016/j.neuron.2014.04.044. Epub 2014 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验