Qiu Bao, Zhou Yuhuan, Liang Haoyan, Zhang Minghao, Gu Kexin, Zeng Tao, Zhou Zhou, Wen Wen, Miao Ping, He Lunhua, Xiao Yinguo, Burke Sven, Liu Zhaoping, Meng Ying Shirley
Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
Nature. 2025 Apr;640(8060):941-946. doi: 10.1038/s41586-025-08765-x. Epub 2025 Apr 16.
Structural disorder within materials gives rise to fascinating phenomena, attributed to the intricate interplay of their thermodynamic and electrochemical properties. Oxygen-redox (OR) electrochemistry offers a breakthrough in capacity limits, while inducing structural disorder with reduced electrochemical reversibility. The conventional explanation for the thermal expansion of solids relies on the Grüneisen relationship, linking the expansion coefficient to the anharmonicity of the crystal lattice. However, this paradigm may not be applicable to OR materials due to the unexplored dynamic disorder-order transition in such systems. Here we reveal the presence of negative thermal expansion with a large coefficient value of -14.4(2) × 10 °C in OR active materials, attributing this to thermally driven disorder-order transitions. The modulation of OR behaviour not only enables precise control over the thermal expansion coefficient of materials, but also establishes a pragmatic framework for the design of functional materials with zero thermal expansion. Furthermore, we demonstrate that the reinstatement of structural disorder within the material can also be accomplished through the electrochemical driving force. By adjusting the cut-off voltages, evaluation of the discharge voltage change indicates a potential for nearly 100% structure recovery. This finding offers a pathway for restoring OR active materials to their pristine state through operando electrochemical processes, presenting a new mitigation strategy to address the persistent challenge of voltage decay.
材料内部的结构无序会引发迷人的现象,这归因于其热力学和电化学性质的复杂相互作用。氧还原(OR)电化学在容量限制方面带来了突破,同时会引发结构无序并降低电化学可逆性。固体热膨胀的传统解释依赖于格林爱森关系,即将膨胀系数与晶格的非简谐性联系起来。然而,由于此类系统中尚未探索的动态无序 - 有序转变,这种范式可能不适用于OR材料。在此,我们揭示了OR活性材料中存在负热膨胀,其大系数值为 -14.4(2)×10⁻⁶ °C⁻¹,将此归因于热驱动的无序 - 有序转变。OR行为的调制不仅能够精确控制材料的热膨胀系数,还为设计具有零热膨胀的功能材料建立了一个实用框架。此外,我们证明了材料内部结构无序的恢复也可以通过电化学驱动力来实现。通过调整截止电压,对放电电压变化的评估表明几乎有100%的结构恢复潜力。这一发现为通过原位电化学过程将OR活性材料恢复到其原始状态提供了一条途径,提出了一种新的缓解策略来应对电压衰减这一持续挑战。