IEEE Trans Biomed Circuits Syst. 2010 Oct;4(5):265-73. doi: 10.1109/TBCAS.2010.2049743.
Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.
脑机接口 (BCI) 为改善残疾人士的生活质量提供了巨大的希望。BCI 使用尖峰排序来识别每个神经发射的源。迄今为止,尖峰排序要么通过使用片外分析来执行,这需要穿透颅骨的有线连接到一个庞大的外部电源/处理单元,要么通过缺乏执行不同算法和升级的可编程专用集成电路来执行。在这项研究中,我们提出并测试了在可编程智能尘粒上进行片上实时尖峰排序的可行性,包括特征提取、分类、压缩和无线传输。使用 DVFS 进行了详细的功率/性能权衡分析。我们的实验结果表明,执行时间和功率密度满足在单个神经通道上执行实时尖峰排序和无线传输的要求。