Suppr超能文献

用于可重构硬件中尖峰分类的高效架构。

Efficient architecture for spike sorting in reconfigurable hardware.

机构信息

Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei 116, Taiwan.

出版信息

Sensors (Basel). 2013 Nov 1;13(11):14860-87. doi: 10.3390/s131114860.

Abstract

This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

摘要

本文提出了一种用于快速尖峰分类的新型硬件架构。该架构能够在硬件中同时执行特征提取和聚类。广义海布算法(GHA)和模糊 C 均值(FCM)算法分别用于特征提取和聚类。GHA 的采用允许对后续聚类操作进行主成分的有效计算。FCM 能够实现用于尖峰分类的近最优聚类。其性能对初始聚类中心的选择不敏感。GHA 和 FCM 的硬件实现具有低面积成本和高吞吐量的特点。在 GHA 架构中,不同权重向量的计算共享相同的电路,以降低面积成本。此外,在 FCM 硬件实现中,通常用于更新隶属度矩阵和聚类中心的迭代操作被合并为一个更新过程,以避免大的存储需求。为了展示电路的有效性,所提出的架构通过现场可编程门阵列(FPGA)进行物理实现。它被嵌入片上系统(SOC)平台中进行性能测量。实验结果表明,所提出的架构是一种用于实现高分类正确率和高速计算的高效尖峰分类设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb65/3869989/9eb4f1559179/sensors-13-14860f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验