Chan H S, Dill K A
Department of Pharmaceutical Chemistry, University of California, San Francisco 94143.
Proc Natl Acad Sci U S A. 1990 Aug;87(16):6388-92. doi: 10.1073/pnas.87.16.6388.
The principal forces of protein folding--hydrophobicity and conformational entropy--are nonspecific. A long-standing puzzle has, therefore, been: What forces drive the formation of the specific internal architectures in globular proteins? We find that any self-avoiding flexible polymer molecule will develop large amounts of secondary structure, helices and parallel and antiparallel sheets, as it is driven to increasing compactness by any force of attraction among the chain monomers. Thus structure formation arises from the severity of steric constraints in compact polymers. This steric principle of organization can account for why short helices are stable in globular proteins, why there are parallel and anti-parallel sheets in proteins, and why weakly unfolded proteins have some secondary structure. On this basis, it should be possible to construct copolymers, not necessarily using amino acids, that can collapse to maximum compactness in incompatible solvents and that should then have structural organization resembling that of proteins.
蛋白质折叠的主要驱动力——疏水性和构象熵——是非特异性的。因此,一个长期存在的谜题是:是什么力量驱动球状蛋白质中特定内部结构的形成?我们发现,任何自回避的柔性聚合物分子,当其被链单体之间的任何吸引力驱使而变得更加紧密时,都会形成大量的二级结构,如螺旋以及平行和反平行的片层。因此,结构的形成源于紧密聚合物中空间位阻的严重性。这种空间组织原则可以解释为什么短螺旋在球状蛋白质中是稳定的,为什么蛋白质中有平行和反平行的片层,以及为什么弱展开的蛋白质具有一些二级结构。在此基础上,应该有可能构建不一定使用氨基酸的共聚物,它们可以在不相容的溶剂中折叠成最大紧密程度,并且应该具有类似于蛋白质的结构组织。