Department of Medicine and Center for Computational and Structural Dynamics, University of Alabama at Birmingham, Birmingham, AL 35294.
J Lipid Res. 2013 Oct;54(10):2718-32. doi: 10.1194/jlr.M039206. Epub 2013 Jul 15.
Since spheroidal HDL particles (sHDL) are highly dynamic, molecular dynamics (MD) simulations are useful for obtaining structural models. Here we use MD to simulate sHDL with stoichiometries of reconstituted and circulating particles. The hydrophobic effect during simulations rapidly remodels discoidal HDL containing mixed lipids to sHDL containing a cholesteryl ester/triglyceride (CE/TG) core. We compare the results of simulations of previously characterized reconstituted sHDL particles containing two or three apoA-I created in the absence of phospholipid transfer protein (PLTP) with simulations of circulating human HDL containing two or three apoA-I without apoA-II. We find that circulating sHDL compared with reconstituted sHDL with the same number of apoA-I per particle contain approximately equal volumes of core lipid but significantly less surface lipid monolayers. We conclude that in vitro reconstituted sHDL particles contain kinetically trapped excess phospholipid and are less than ideal models for circulating sHDL particles. In the circulation, phospholipid transfer via PLTP decreases the ratio of phospholipid to apolipoprotein for all sHDL particles. Further, sHDL containing two or three apoA-I adapt to changes in surface area by condensation of common conformational motifs. These results represent an important step toward resolving the complicated issue of the protein and lipid stoichiometry of circulating HDL.
由于球形高密度脂蛋白(sHDL)颗粒具有高度动态性,因此分子动力学(MD)模拟对于获得结构模型非常有用。在这里,我们使用 MD 模拟具有再构成和循环颗粒化学计量的 sHDL。模拟过程中的疏水性效应会迅速将含有混合脂质的盘状 HDL 重塑为含有胆固醇酯/甘油三酯(CE/TG)核心的 sHDL。我们比较了先前在没有磷脂转移蛋白(PLTP)的情况下用载脂蛋白 A-I (apoA-I)模拟两种或三种载脂蛋白 A-I 重建的 sHDL 颗粒与含有两种或三种载脂蛋白 A-I 而没有载脂蛋白 A-II 的人循环 HDL 的模拟结果。我们发现与每个颗粒具有相同数量 apoA-I 的再构成 sHDL 相比,循环 sHDL 含有大致相等体积的核心脂质,但表面脂质单层明显较少。我们得出结论,体外重建的 sHDL 颗粒含有动力学捕获的多余磷脂,并且不如具有相同数量 apoA-I 的循环 sHDL 颗粒理想。在循环中,通过 PLTP 的磷脂转移会降低所有 sHDL 颗粒中磷脂与载脂蛋白的比例。此外,含有两种或三种 apoA-I 的 sHDL 通过常见构象基序的凝聚来适应表面积的变化。这些结果是解决循环 HDL 中蛋白质和脂质化学计量复杂问题的重要一步。