Suppr超能文献

一种新的体内生物化学调控原则:多效性低亲和力调节由腺嘌呤核苷酸——以酿酒酵母糖酵解酶为例。

A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae.

机构信息

Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.

出版信息

FEBS Lett. 2013 Sep 2;587(17):2860-7. doi: 10.1016/j.febslet.2013.07.013. Epub 2013 Jul 12.

Abstract

Enzymology tends to focus on highly specific effects of substrates, allosteric modifiers, and products occurring at low concentrations, because these are most informative about the enzyme's catalytic mechanism. We hypothesized that at relatively high in vivo concentrations, important molecular monitors of the state of living cells, such as ATP, affect multiple enzymes of the former and that these interactions have gone unnoticed in enzymology. We test this hypothesis in terms of the effect that ATP, ADP, and AMP might have on the major free-energy delivering pathway of the yeast Saccharomyces cerevisiae. Assaying cell-free extracts, we collected a comprehensive set of quantitative kinetic data concerning the enzymes of the glycolytic and the ethanol fermentation pathways. We determined systematically the extent to which the enzyme activities depend on the concentrations of the adenine nucleotides. We found that the effects of the adenine nucleotides on enzymes catalysing reactions in which they are not directly involved as substrate or product, are substantial. This includes effects on the Michaelis-Menten constants, adding new perspective on these, 100 years after their introduction.

摘要

酶学倾向于关注底物、变构调节剂和低浓度产物的高度特异性效应,因为这些对酶的催化机制最有信息意义。我们假设,在相对较高的体内浓度下,作为活细胞状态的重要分子监测器的 ATP 等物质会影响以前的多种酶,而这些相互作用在酶学中并未被注意到。我们根据 ATP、ADP 和 AMP 可能对酵母酿酒酵母的主要自由能传递途径的影响来检验这一假设。通过对无细胞提取物进行检测,我们收集了有关糖酵解和乙醇发酵途径的酶的全面定量动力学数据。我们系统地确定了酶活性对腺嘌呤核苷酸浓度的依赖程度。我们发现,腺嘌呤核苷酸对作为底物或产物不直接参与的酶催化反应的影响是实质性的。这包括对米氏常数的影响,为这些常数提供了新的视角,这是它们引入 100 年后的事情了。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验