Suarez-Mendez C A, Hanemaaijer M, Ten Pierick Angela, Wolters J C, Heijnen J J, Wahl S A
Department of Biotechnology, Delft University of Technology, Julianalaan 67 - 2628 BC Delft, The Netherlands.
Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands.
Metab Eng Commun. 2016 Jan 22;3:52-63. doi: 10.1016/j.meteno.2016.01.001. eCollection 2016 Dec.
C labeling experiments in aerobic glucose limited cultures of at four different growth rates (0.054; 0.101, 0.207, 0.307 h) are used for calculating fluxes that include intracellular cycles (e.g., storage carbohydrate cycles, exchange fluxes with amino acids), which are rearranged depending on the growth rate. At low growth rates the impact of the storage carbohydrate recycle is relatively more significant than at high growth rates due to a higher concentration of these materials in the cell (up to 560-fold) and higher fluxes relative to the glucose uptake rate (up to 16%). Experimental observations suggest that glucose can be exported to the extracellular space, and that its source is related to storage carbohydrates, most likely via the export and subsequent extracellular breakdown of trehalose. This hypothesis is strongly supported by C-labeling experimental data, measured extracellular trehalose, and the corresponding flux estimations.
在四种不同生长速率(0.054、0.101、0.207、0.307 h⁻¹)的需氧葡萄糖受限培养物中进行¹³C标记实验,用于计算包括细胞内循环(例如储存碳水化合物循环、与氨基酸的交换通量)的通量,这些通量会根据生长速率重新排列。在低生长速率下,储存碳水化合物循环的影响相对比高生长速率下更显著,这是由于细胞中这些物质的浓度较高(高达560倍)以及相对于葡萄糖摄取速率的通量较高(高达16%)。实验观察表明葡萄糖可以输出到细胞外空间,并且其来源与储存碳水化合物有关,最有可能是通过海藻糖的输出及随后的细胞外分解。¹³C标记实验数据、测得的细胞外海藻糖以及相应的通量估计有力地支持了这一假设。