Suppr超能文献

病因异质性的基因组研究:方法学挑战

Genomic investigation of etiologic heterogeneity: methodologic challenges.

作者信息

Begg Colin B, Seshan Venkatraman E, Zabor Emily C, Furberg Helena, Arora Arshi, Shen Ronglai, Maranchie Jodi K, Nielsen Matthew E, Rathmell W Kimryn, Signoretti Sabina, Tamboli Pheroze, Karam Jose A, Choueiri Toni K, Hakimi A Ari, Hsieh James J

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

BMC Med Res Methodol. 2014 Dec 22;14:138. doi: 10.1186/1471-2288-14-138.

Abstract

BACKGROUND

The etiologic heterogeneity of cancer has traditionally been investigated by comparing risk factor frequencies within candidate sub-types, defined for example by histology or by distinct tumor markers of interest. Increasingly tumors are being profiled for molecular features much more extensively. This greatly expands the opportunities for defining distinct sub-types. In this article we describe an exploratory analysis of the etiologic heterogeneity of clear cell kidney cancer. Data are available on the primary known risk factors for kidney cancer, while the tumors are characterized on a genome-wide basis using expression, methylation, copy number and mutational profiles.

METHODS

We use a novel clustering strategy to identify sub-types. This is accomplished independently for the expression, methylation and copy number profiles. The goals are to identify tumor sub-types that are etiologically distinct, to identify the risk factors that define specific sub-types, and to endeavor to characterize the key genes that appear to represent the principal features of the distinct sub-types.

RESULTS

The analysis reveals strong evidence that gender represents an important factor that distinguishes disease sub-types. The sub-types defined using expression data and methylation data demonstrate considerable congruence and are also clearly correlated with mutations in important cancer genes. These sub-types are also strongly correlated with survival. The complexity of the data presents many analytical challenges including, prominently, the risk of false discovery.

CONCLUSIONS

Genomic profiling of tumors offers the opportunity to identify etiologically distinct sub-types, paving the way for a more refined understanding of cancer etiology.

摘要

背景

癌症的病因异质性传统上是通过比较候选亚型内的危险因素频率来研究的,这些亚型例如由组织学或感兴趣的不同肿瘤标志物定义。越来越多的肿瘤正在更广泛地进行分子特征分析。这极大地扩展了定义不同亚型的机会。在本文中,我们描述了对透明细胞肾癌病因异质性的探索性分析。关于肾癌的主要已知危险因素有数据可用,同时使用表达、甲基化、拷贝数和突变谱在全基因组范围内对肿瘤进行特征描述。

方法

我们使用一种新颖的聚类策略来识别亚型。这是针对表达、甲基化和拷贝数谱独立完成的。目标是识别病因上不同的肿瘤亚型,识别定义特定亚型的危险因素,并努力表征似乎代表不同亚型主要特征的关键基因。

结果

分析揭示了有力证据,表明性别是区分疾病亚型的一个重要因素。使用表达数据和甲基化数据定义的亚型显示出相当大的一致性,并且也与重要癌症基因中的突变明显相关。这些亚型也与生存密切相关。数据的复杂性带来了许多分析挑战,其中突出的是错误发现的风险。

结论

肿瘤的基因组分析为识别病因上不同的亚型提供了机会,为更精确地理解癌症病因铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f0/4292824/c0be3f478f40/12874_2014_1148_Fig1_HTML.jpg

相似文献

1
Genomic investigation of etiologic heterogeneity: methodologic challenges.
BMC Med Res Methodol. 2014 Dec 22;14:138. doi: 10.1186/1471-2288-14-138.
2
Type 1 and 2 papillary renal cancers are genetically distinct.
Lancet Oncol. 2015 Dec;16(16):e594. doi: 10.1016/S1470-2045(15)00499-4. Epub 2015 Nov 17.
3
Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma.
Cancer Res. 2012 Oct 15;72(20):5273-84. doi: 10.1158/0008-5472.CAN-12-0656. Epub 2012 Aug 27.
4
Identifying Etiologically Distinct Sub-Types of Cancer: A Demonstration Project Involving Breast Cancer.
Cancer Med. 2015 Sep;4(9):1432-9. doi: 10.1002/cam4.456. Epub 2015 May 13.
8
Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
BJU Int. 2011 Jul;108(2 Pt 2):E29-35. doi: 10.1111/j.1464-410X.2010.09794.x. Epub 2011 Mar 16.
9
10
Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers.
J Bioinform Comput Biol. 2018 Apr;16(2):1850006. doi: 10.1142/S0219720018500063. Epub 2018 Feb 22.

引用本文的文献

1
Molecular differences in renal cell carcinoma between males and females.
World J Urol. 2023 Jul;41(7):1727-1739. doi: 10.1007/s00345-023-04347-6. Epub 2023 Mar 11.
2
Validity of a method for identifying disease subtypes that are etiologically heterogeneous.
Stat Methods Med Res. 2021 Sep;30(9):2045-2056. doi: 10.1177/09622802211032704. Epub 2021 Jul 28.
3
Evidence for Etiologic Subtypes of Breast Cancer in the Carolina Breast Cancer Study.
Cancer Epidemiol Biomarkers Prev. 2019 Nov;28(11):1784-1791. doi: 10.1158/1055-9965.EPI-19-0365. Epub 2019 Aug 8.
5
Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine.
Gut. 2018 Jun;67(6):1168-1180. doi: 10.1136/gutjnl-2017-315537. Epub 2018 Feb 6.
6
Utility of inverse probability weighting in molecular pathological epidemiology.
Eur J Epidemiol. 2018 Apr;33(4):381-392. doi: 10.1007/s10654-017-0346-8. Epub 2017 Dec 20.
7
A Multinomial Regression Approach to Model Outcome Heterogeneity.
Am J Epidemiol. 2017 Nov 1;186(9):1097-1103. doi: 10.1093/aje/kwx161.
8
Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis.
J Gastroenterol. 2017 Mar;52(3):265-275. doi: 10.1007/s00535-016-1272-3. Epub 2016 Oct 13.
9
Integration of molecular pathology, epidemiology and social science for global precision medicine.
Expert Rev Mol Diagn. 2016;16(1):11-23. doi: 10.1586/14737159.2016.1115346. Epub 2015 Dec 4.
10
Statistical methods for studying disease subtype heterogeneity.
Stat Med. 2016 Feb 28;35(5):782-800. doi: 10.1002/sim.6793. Epub 2015 Dec 1.

本文引用的文献

1
A conceptual and methodological framework for investigating etiologic heterogeneity.
Stat Med. 2013 Dec 20;32(29):5039-52. doi: 10.1002/sim.5902. Epub 2013 Jul 16.
2
Comprehensive molecular characterization of clear cell renal cell carcinoma.
Nature. 2013 Jul 4;499(7456):43-9. doi: 10.1038/nature12222. Epub 2013 Jun 23.
3
Risk factors for renal cell carcinoma in the VITAL study.
J Urol. 2013 Nov;190(5):1657-61. doi: 10.1016/j.juro.2013.04.130. Epub 2013 May 9.
4
Renal-cell carcinoma: a step closer to a new classification.
Lancet Oncol. 2013 Feb;14(2):105-7. doi: 10.1016/S1470-2045(12)70599-5. Epub 2013 Jan 16.
5
Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease.
Mod Pathol. 2013 Apr;26(4):465-84. doi: 10.1038/modpathol.2012.214. Epub 2013 Jan 11.
6
Transporters in human platelets: physiologic function and impact for pharmacotherapy.
Blood. 2012 Apr 12;119(15):3394-402. doi: 10.1182/blood-2011-09-336933. Epub 2012 Feb 14.
7
Epigenomics in environmental health.
Front Genet. 2011 Nov 22;2:84. doi: 10.3389/fgene.2011.00084. eCollection 2011.
10
BMI and the risk of renal cell carcinoma.
Curr Opin Urol. 2011 Sep;21(5):356-61. doi: 10.1097/MOU.0b013e32834962d5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验