Li Ruitong, Ugai Tomotaka, Xu Lantian, Zucker David, Ogino Shuji, Wang Molin
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
Cancers (Basel). 2022 Apr 2;14(7):1811. doi: 10.3390/cancers14071811.
Molecular pathologic diagnosis is important in clinical (oncology) practice. Integration of molecular pathology into epidemiological methods (i.e., molecular pathological epidemiology) allows for investigating the distinct etiology of disease subtypes based on biomarker analyses, thereby contributing to precision medicine and prevention. However, existing approaches for investigating etiological heterogeneity deal with categorical subtypes. We aimed to fully leverage continuous measures available in most biomarker readouts (gene/protein expression levels, signaling pathway activation, immune cell counts, microbiome/microbial abundance in tumor microenvironment, etc.). We present a cause-specific Cox proportional hazards regression model for evaluating how the exposure-disease subtype association changes across continuous subtyping biomarker levels. Utilizing two longitudinal observational prospective cohort studies, we investigated how the association of alcohol intake (a risk factor) with colorectal cancer incidence differed across the continuous values of tumor epigenetic DNA methylation at long interspersed nucleotide element-1 (LINE-1). The heterogeneous alcohol effect was modeled using different functions of the LINE-1 marker to demonstrate the method's flexibility. This real-world proof-of-principle computational application demonstrates how the new method enables visualizing the trend of the exposure effect over continuous marker levels. The utilization of continuous biomarker data without categorization for investigating etiological heterogeneity can advance our understanding of biological and pathogenic mechanisms.
分子病理诊断在临床(肿瘤学)实践中至关重要。将分子病理学整合到流行病学方法中(即分子病理流行病学),能够基于生物标志物分析来研究疾病亚型的独特病因,从而推动精准医学和预防工作的开展。然而,现有的病因异质性研究方法处理的是分类亚型。我们旨在充分利用大多数生物标志物读数中可用的连续测量值(基因/蛋白质表达水平、信号通路激活、免疫细胞计数、肿瘤微环境中的微生物组/微生物丰度等)。我们提出了一种病因特异性Cox比例风险回归模型,用于评估暴露 - 疾病亚型关联如何随连续的亚型生物标志物水平而变化。利用两项纵向观察性前瞻性队列研究,我们研究了酒精摄入量(一种风险因素)与结直肠癌发病率之间的关联在长散在核苷酸元件1(LINE - 1)处肿瘤表观遗传DNA甲基化的连续值上是如何不同的。使用LINE - 1标记的不同函数对异质酒精效应进行建模,以展示该方法的灵活性。这个实际应用的原理验证计算应用展示了新方法如何能够可视化暴露效应在连续标志物水平上的趋势。利用未分类的连续生物标志物数据来研究病因异质性能够增进我们对生物学和致病机制的理解。