Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
PLoS One. 2012;7(7):e39857. doi: 10.1371/journal.pone.0039857. Epub 2012 Jul 31.
We present a probabilistic model for natural images that is based on mixtures of Gaussian scale mixtures and a simple multiscale representation. We show that it is able to generate images with interesting higher-order correlations when trained on natural images or samples from an occlusion-based model. More importantly, our multiscale model allows for a principled evaluation. While it is easy to generate visually appealing images, we demonstrate that our model also yields the best performance reported to date when evaluated with respect to the cross-entropy rate, a measure tightly linked to the average log-likelihood. The ability to quantitatively evaluate our model differentiates it from other multiscale models, for which evaluation of these kinds of measures is usually intractable.
我们提出了一种基于高斯混合和简单多尺度表示的自然图像概率模型。我们表明,当在自然图像或基于遮挡的模型样本上进行训练时,它能够生成具有有趣的高阶相关性的图像。更重要的是,我们的多尺度模型允许进行有原则的评估。虽然生成视觉上吸引人的图像很容易,但我们证明,当根据与平均对数似然紧密相关的交叉熵率进行评估时,我们的模型也能获得迄今为止报告的最佳性能。我们的模型能够对其进行定量评估,这使其与其他多尺度模型区分开来,对于这些模型,通常难以评估这些类型的度量。