Suppr超能文献

果蝇光感受器和无长突细胞层中对比度增益控制的稀疏识别。

Sparse identification of contrast gain control in the fruit fly photoreceptor and amacrine cell layer.

作者信息

Lazar Aurel A, Ukani Nikul H, Zhou Yiyin

机构信息

Department of Electrical Engineering, Columbia University, New York, USA.

出版信息

J Math Neurosci. 2020 Feb 12;10(1):3. doi: 10.1186/s13408-020-0080-5.

Abstract

The fruit fly's natural visual environment is often characterized by light intensities ranging across several orders of magnitude and by rapidly varying contrast across space and time. Fruit fly photoreceptors robustly transduce and, in conjunction with amacrine cells, process visual scenes and provide the resulting signal to downstream targets. Here, we model the first step of visual processing in the photoreceptor-amacrine cell layer. We propose a novel divisive normalization processor (DNP) for modeling the computation taking place in the photoreceptor-amacrine cell layer. The DNP explicitly models the photoreceptor feedforward and temporal feedback processing paths and the spatio-temporal feedback path of the amacrine cells. We then formally characterize the contrast gain control of the DNP and provide sparse identification algorithms that can efficiently identify each the feedforward and feedback DNP components. The algorithms presented here are the first demonstration of tractable and robust identification of the components of a divisive normalization processor. The sparse identification algorithms can be readily employed in experimental settings, and their effectiveness is demonstrated with several examples.

摘要

果蝇的自然视觉环境通常具有跨越几个数量级的光强度特征,以及在空间和时间上快速变化的对比度。果蝇光感受器能有力地转导视觉场景,并与无长突细胞一起处理视觉场景,然后将产生的信号提供给下游靶点。在此,我们对光感受器 - 无长突细胞层中的视觉处理第一步进行建模。我们提出一种新颖的归一化除法处理器(DNP),用于对在光感受器 - 无长突细胞层中发生的计算进行建模。DNP明确地对光感受器的前馈和时间反馈处理路径以及无长突细胞的时空反馈路径进行建模。然后,我们正式描述了DNP的对比度增益控制,并提供了稀疏识别算法,该算法能够有效地识别前馈和反馈DNP组件。此处提出的算法首次证明了对归一化除法处理器组件进行易于处理且稳健的识别。这些稀疏识别算法可很容易地应用于实验设置中,并且通过几个例子证明了它们的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a03/7016054/408698166660/13408_2020_80_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验