Suppr超能文献

利用全球定位系统和谷歌地图预测救护车到达急诊科的时间。

Predicting ambulance time of arrival to the emergency department using global positioning system and Google maps.

机构信息

Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon, USA.

出版信息

Prehosp Emerg Care. 2013 Oct-Dec;17(4):458-65. doi: 10.3109/10903127.2013.811562. Epub 2013 Jul 18.

Abstract

OBJECTIVE

To derive and validate a model that accurately predicts ambulance arrival time that could be implemented as a Google Maps web application.

METHODS

This was a retrospective study of all scene transports in Multnomah County, Oregon, from January 1 through December 31, 2008. Scene and destination hospital addresses were converted to coordinates. ArcGIS Network Analyst was used to estimate transport times based on street network speed limits. We then created a linear regression model to improve the accuracy of these street network estimates using weather, patient characteristics, use of lights and sirens, daylight, and rush-hour intervals. The model was derived from a 50% sample and validated on the remainder. Significance of the covariates was determined by p < 0.05 for a t-test of the model coefficients. Accuracy was quantified by the proportion of estimates that were within 5 minutes of the actual transport times recorded by computer-aided dispatch. We then built a Google Maps-based web application to demonstrate application in real-world EMS operations.

RESULTS

There were 48,308 included transports. Street network estimates of transport time were accurate within 5 minutes of actual transport time less than 16% of the time. Actual transport times were longer during daylight and rush-hour intervals and shorter with use of lights and sirens. Age under 18 years, gender, wet weather, and trauma system entry were not significant predictors of transport time. Our model predicted arrival time within 5 minutes 73% of the time. For lights and sirens transports, accuracy was within 5 minutes 77% of the time. Accuracy was identical in the validation dataset. Lights and sirens saved an average of 3.1 minutes for transports under 8.8 minutes, and 5.3 minutes for longer transports.

CONCLUSIONS

An estimate of transport time based only on a street network significantly underestimated transport times. A simple model incorporating few variables can predict ambulance time of arrival to the emergency department with good accuracy. This model could be linked to global positioning system data and an automated Google Maps web application to optimize emergency department resource use. Use of lights and sirens had a significant effect on transport times.

摘要

目的

开发并验证一个能够准确预测救护车到达时间的模型,该模型可作为谷歌地图网络应用程序实现。

方法

这是一项回顾性研究,涉及俄勒冈州芒特诺玛县 2008 年 1 月 1 日至 12 月 31 日期间的所有现场转运。将现场和目的地医院的地址转换为坐标。ArcGIS Network Analyst 用于根据街道网络限速估算运输时间。然后,我们创建了一个线性回归模型,使用天气、患者特征、使用灯光和警笛、白天和高峰时段来提高这些街道网络估算的准确性。该模型源自 50%的样本,其余部分用于验证。通过对模型系数进行 t 检验,确定协变量的显著性,p 值小于 0.05。通过估计值与计算机辅助调度记录的实际运输时间相差 5 分钟以内的比例来量化准确性。然后,我们构建了一个基于谷歌地图的网络应用程序,以展示在现实世界中的紧急医疗服务运营中的应用。

结果

共纳入 48308 例转运。街道网络估计的运输时间准确,与实际运输时间相差 5 分钟以内的时间不到 16%。白天和高峰时段的实际运输时间较长,使用灯光和警笛的时间较短。年龄在 18 岁以下、性别、湿天气和创伤系统进入不是运输时间的显著预测因素。我们的模型预测到达时间在 5 分钟内的准确率为 73%。对于使用灯光和警笛的转运,准确率在 5 分钟内的准确率为 77%。验证数据集的准确性相同。灯光和警笛为转运时间少于 8.8 分钟的患者节省了平均 3.1 分钟,为转运时间较长的患者节省了 5.3 分钟。

结论

仅基于街道网络的运输时间估计严重低估了运输时间。一个简单的模型,包含少量变量,可以很好地预测救护车到达急诊部的时间。该模型可以与全球定位系统数据和自动化谷歌地图网络应用程序连接,以优化急诊部资源利用。使用灯光和警笛对运输时间有显著影响。

相似文献

1
Predicting ambulance time of arrival to the emergency department using global positioning system and Google maps.
Prehosp Emerg Care. 2013 Oct-Dec;17(4):458-65. doi: 10.3109/10903127.2013.811562. Epub 2013 Jul 18.
3
The association between ambulance hospital turnaround times and patient acuity, destination hospital, and time of day.
Prehosp Emerg Care. 2011 Jul-Sep;15(3):366-70. doi: 10.3109/10903127.2011.561412. Epub 2011 Apr 11.
4
Effect of urgency level on prehospital emergency transport times: a natural experiment.
Intern Emerg Med. 2024 Mar;19(2):445-453. doi: 10.1007/s11739-023-03501-7. Epub 2023 Dec 20.
5
The Critical Intervention Screen: A Novel Tool to Determine the Use of Lights and Sirens during the Transport of Trauma Patients.
Prehosp Emerg Care. 2022 Jul-Aug;26(4):566-572. doi: 10.1080/10903127.2021.1961040. Epub 2021 Aug 17.
6
Factors Influencing the Timeliness of Emergency Medical Service Response to Time Critical Emergencies.
Prehosp Emerg Care. 2016 Nov-Dec;20(6):783-791. doi: 10.3109/10903127.2016.1164776. Epub 2016 Aug 3.
7
A validation of ground ambulance pre-hospital times modeled using geographic information systems.
Int J Health Geogr. 2012 Oct 3;11:42. doi: 10.1186/1476-072X-11-42.
8
Accuracy of prehospital transport time estimation.
Acad Emerg Med. 2014 Jan;21(1):9-16. doi: 10.1111/acem.12289.
10
The Medical Duty Officer: An Attempt to Mitigate the Ambulance At-Hospital Interval.
West J Emerg Med. 2016 Sep;17(5):662-8. doi: 10.5811/westjem.2016.7.30266. Epub 2016 Aug 23.

引用本文的文献

1
Ambulance route optimization in a mobile ambulance dispatch system using deep neural network (DNN).
Sci Rep. 2025 Apr 24;15(1):14232. doi: 10.1038/s41598-025-95048-0.
2
Traffic Patterns and Emergency Medical Services Prenotification Transport Estimates in Trauma Activations.
Open Access Emerg Med. 2024 Nov 29;16:297-303. doi: 10.2147/OAEM.S480081. eCollection 2024.
3
How do different navigation systems affect emergency response time? A prospective simulation study.
BMJ Open. 2024 Jul 17;14(7):e079094. doi: 10.1136/bmjopen-2023-079094.
4
Effect of urgency level on prehospital emergency transport times: a natural experiment.
Intern Emerg Med. 2024 Mar;19(2):445-453. doi: 10.1007/s11739-023-03501-7. Epub 2023 Dec 20.
5
6
Redefining trauma deserts: novel technique to accurately map prehospital transport time.
Trauma Surg Acute Care Open. 2023 Jan 23;8(1):e001013. doi: 10.1136/tsaco-2022-001013. eCollection 2023.
7
Identification of Platinum(II) Sulfide Complexes Suitable as Intramuscular Cyanide Countermeasures.
Chem Res Toxicol. 2022 Nov 21;35(11):1983-1996. doi: 10.1021/acs.chemrestox.2c00157. Epub 2022 Oct 6.
8
Driving the ambulance: an essential component of emergency medical services: an integrative review.
BMC Emerg Med. 2021 Dec 18;21(1):160. doi: 10.1186/s12873-021-00554-9.
9
Prehospital time for patients with acute cardiac complaints: A rural health disparity.
Am J Emerg Med. 2022 Feb;52:64-68. doi: 10.1016/j.ajem.2021.11.038. Epub 2021 Nov 30.

本文引用的文献

1
A quantile regression analysis of ambulance response time.
Prehosp Emerg Care. 2013 Apr-Jun;17(2):170-6. doi: 10.3109/10903127.2012.729127. Epub 2012 Dec 5.
2
National characteristics of emergency medical services responses in the United States.
Prehosp Emerg Care. 2013 Jan-Mar;17(1):8-14. doi: 10.3109/10903127.2012.722178. Epub 2012 Oct 16.
3
The impact of distance on triage to trauma center care in an urban trauma system.
Prehosp Emerg Care. 2012 Oct-Dec;16(4):456-62. doi: 10.3109/10903127.2012.695431. Epub 2012 Jun 27.
4
Reducing ambulance response times using geospatial-time analysis of ambulance deployment.
Acad Emerg Med. 2010 Sep;17(9):951-7. doi: 10.1111/j.1553-2712.2010.00860.x.
6
Improving rural emergency medical service response time with global positioning system navigation.
J Trauma. 2009 Nov;67(5):899-902. doi: 10.1097/TA.0b013e3181bc781d.
7
A meta-analysis of prehospital care times for trauma.
Prehosp Emerg Care. 2006 Apr-Jun;10(2):198-206. doi: 10.1080/10903120500541324.
8
A geographic information system simulation model of EMS: reducing ambulance response time.
Am J Emerg Med. 2004 May;22(3):164-70. doi: 10.1016/j.ajem.2004.02.003.
10
GIS in EMS.
JEMS. 2003 Jul;28(7):89-91.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验