Suppr超能文献

基于亚细胞定位的蛋白质基序分类揭示了序列和功能水平上的进化关系。

Classification of protein motifs based on subcellular localization uncovers evolutionary relationships at both sequence and functional levels.

机构信息

Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, 41013, Sevilla, Spain.

出版信息

BMC Bioinformatics. 2013 Jul 18;14:229. doi: 10.1186/1471-2105-14-229.

Abstract

BACKGROUND

Most proteins have evolved in specific cellular compartments that limit their functions and potential interactions. On the other hand, motifs define amino acid arrangements conserved between protein family members and represent powerful tools for assigning function to protein sequences. The ideal motif would identify all members of a protein family but in practice many motifs identify both family members and unrelated proteins, referred to as True Positive (TP) and False Positive (FP) sequences, respectively.

RESULTS

To address the relationship between protein motifs, protein function and cellular localization, we systematically assigned subcellular localization data to motif sequences from the comprehensive PROSITE sequence motif database. Using this data we analyzed relationships between localization and function. We find that TPs and FPs have a strong tendency to localize in different compartments. When multiple localizations are considered, TPs are usually distributed between related cellular compartments. We also identified cases where FPs are concentrated in particular subcellular regions, indicating possible functional or evolutionary relationships with TP sequences of the same motif.

CONCLUSIONS

Our findings suggest that the systematic examination of subcellular localization has the potential to uncover evolutionary and functional relationships between motif-containing sequences. We believe that this type of analysis complements existing motif annotations and could aid in their interpretation. Our results shed light on the evolution of cellular organelles and potentially establish the basis for new subcellular localization and function prediction algorithms.

摘要

背景

大多数蛋白质在特定的细胞隔室中进化,这限制了它们的功能和潜在相互作用。另一方面,基序定义了在蛋白质家族成员之间保守的氨基酸排列,是为蛋白质序列分配功能的强大工具。理想的基序应该能够识别蛋白质家族的所有成员,但实际上许多基序既可以识别家族成员,也可以识别不相关的蛋白质,分别称为真阳性 (TP) 和假阳性 (FP) 序列。

结果

为了解决蛋白质基序、蛋白质功能和细胞定位之间的关系,我们系统地将细胞定位数据分配给来自全面的 PROSITE 序列基序数据库中的基序序列。使用此数据,我们分析了定位与功能之间的关系。我们发现 TP 和 FP 强烈倾向于在不同的隔室中定位。当考虑多个定位时,TP 通常分布在相关的细胞隔室之间。我们还确定了 FP 集中在特定亚细胞区域的情况,表明与同一基序的 TP 序列存在可能的功能或进化关系。

结论

我们的发现表明,系统地检查亚细胞定位有可能揭示基序包含序列之间的进化和功能关系。我们相信这种类型的分析补充了现有的基序注释,并有助于对其进行解释。我们的结果揭示了细胞器官的进化,并可能为新的亚细胞定位和功能预测算法奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b7/3724711/580b053930d8/1471-2105-14-229-1.jpg

相似文献

2
Exploration of novel motifs derived from mouse cDNA sequences.
Genome Res. 2002 Mar;12(3):367-78. doi: 10.1101/gr.193702.
3
Automatic annotation of protein motif function with Gene Ontology terms.
BMC Bioinformatics. 2004 Sep 2;5:122. doi: 10.1186/1471-2105-5-122.
4
Prediction of protein subcellular localization.
Proteins. 2006 Aug 15;64(3):643-51. doi: 10.1002/prot.21018.
5
Computing motif correlations in proteins.
J Comput Chem. 2003 Dec;24(16):2032-43. doi: 10.1002/jcc.10332.
6
Discriminative motif finding for predicting protein subcellular localization.
IEEE/ACM Trans Comput Biol Bioinform. 2011 Mar-Apr;8(2):441-51. doi: 10.1109/TCBB.2009.82.
7
PROSITE: a documented database using patterns and profiles as motif descriptors.
Brief Bioinform. 2002 Sep;3(3):265-74. doi: 10.1093/bib/3.3.265.
8
Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.
PLoS Comput Biol. 2014 Mar 6;10(3):e1003504. doi: 10.1371/journal.pcbi.1003504. eCollection 2014 Mar.
9
Computational identification and analysis of protein short linear motifs.
Front Biosci (Landmark Ed). 2010 Jun 1;15(3):801-25. doi: 10.2741/3647.
10
FGsub: Fusarium graminearum protein subcellular localizations predicted from primary structures.
BMC Syst Biol. 2010 Sep 13;4 Suppl 2(Suppl 2):S12. doi: 10.1186/1752-0509-4-S2-S12.

引用本文的文献

2
TCRpred: incorporating T-cell receptor repertoire for clinical outcome prediction.
Front Genet. 2024 Mar 13;15:1345559. doi: 10.3389/fgene.2024.1345559. eCollection 2024.
4
Hcp distribute in the cytoplasm and regulate TNF signaling pathway in BHK-21 cells.
3 Biotech. 2020 Jul;10(7):301. doi: 10.1007/s13205-020-02296-0. Epub 2020 Jun 12.
6
Moonlighting proteins in cancer.
Cancer Lett. 2016 Jan 1;370(1):108-16. doi: 10.1016/j.canlet.2015.09.022. Epub 2015 Oct 20.

本文引用的文献

3
Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites.
Biochem Soc Trans. 2012 Apr;40(2):457-63. doi: 10.1042/BST20110752.
4
Reorganizing the protein space at the Universal Protein Resource (UniProt).
Nucleic Acids Res. 2012 Jan;40(Database issue):D71-5. doi: 10.1093/nar/gkr981. Epub 2011 Nov 18.
5
PROSITE, a protein domain database for functional characterization and annotation.
Nucleic Acids Res. 2010 Jan;38(Database issue):D161-6. doi: 10.1093/nar/gkp885. Epub 2009 Oct 25.
6
The KDEL receptor: new functions for an old protein.
FEBS Lett. 2009 Dec 3;583(23):3863-71. doi: 10.1016/j.febslet.2009.10.053. Epub 2009 Oct 23.
7
False occurrences of functional motifs in protein sequences highlight evolutionary constraints.
BMC Bioinformatics. 2007 Mar 1;8:68. doi: 10.1186/1471-2105-8-68.
8
Inter-organelle membrane contact sites: through a glass, darkly.
Curr Opin Cell Biol. 2006 Aug;18(4):371-8. doi: 10.1016/j.ceb.2006.06.011. Epub 2006 Jun 27.
9
Origin and evolution of the peroxisomal proteome.
Biol Direct. 2006 Mar 23;1:8. doi: 10.1186/1745-6150-1-8.
10
The evolutionary origin of peroxisomes: an ER-peroxisome connection.
Mol Biol Evol. 2006 Apr;23(4):838-45. doi: 10.1093/molbev/msj103. Epub 2006 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验