Suppr超能文献

TCRpred:纳入T细胞受体库以预测临床结果。

TCRpred: incorporating T-cell receptor repertoire for clinical outcome prediction.

作者信息

Liu Meiling, Liu Yang, Hsu Li, He Qianchuan

机构信息

Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States.

Department of Mathematics and Statistics, Wright State University, Dayton, OH, United States.

出版信息

Front Genet. 2024 Mar 13;15:1345559. doi: 10.3389/fgene.2024.1345559. eCollection 2024.

Abstract

T-cell receptor (TCR) plays critical roles in recognizing antigen peptides and mediating adaptive immune response against disease. High-throughput technologies have enabled the sequencing of TCR repertoire at the single nucleotide level, allowing researchers to characterize TCR sequences with high resolutions. The TCR sequences provide important information about patients' adaptive immune system, and have the potential to improve clinical outcome prediction. However, it is challenging to incorporate the TCR repertoire data for prediction, because the data is unstructured, highly complex, and TCR sequences vary widely in their compositions and abundances across different individuals. We introduce TCRpred, an analytic tool for incorporating TCR repertoire for clinical outcome prediction. The TCRpred is able to utilize features that can be extracted from the TCR amino acid sequences, as well as features that are hidden in the TCR amino acid sequences and are hard to extract. Simulation studies show that the proposed approach has a good performance in predicting clinical outcome and tends to be more powerful than potential alternative approaches. We apply the TCRpred to real cancer datasets and demonstrate its practical utility in clinical outcome prediction.

摘要

T细胞受体(TCR)在识别抗原肽和介导针对疾病的适应性免疫反应中发挥着关键作用。高通量技术已能够在单核苷酸水平上对TCR库进行测序,使研究人员能够以高分辨率表征TCR序列。TCR序列提供了有关患者适应性免疫系统的重要信息,并有可能改善临床结果预测。然而,将TCR库数据纳入预测具有挑战性,因为数据是非结构化的、高度复杂的,并且TCR序列在不同个体之间的组成和丰度差异很大。我们引入了TCRpred,这是一种用于将TCR库纳入临床结果预测的分析工具。TCRpred能够利用可从TCR氨基酸序列中提取的特征,以及隐藏在TCR氨基酸序列中且难以提取的特征。模拟研究表明,所提出的方法在预测临床结果方面具有良好的性能,并且往往比潜在的替代方法更强大。我们将TCRpred应用于真实的癌症数据集,并证明了其在临床结果预测中的实际效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb6c/10965803/e4112adf43ee/fgene-15-1345559-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验