Suppr超能文献

在全基因组关联研究中检测数量性状的基因-环境相互作用

Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.

作者信息

Zhang Pingye, Lewinger Juan Pablo, Conti David, Morrison John L, Gauderman W James

机构信息

Department of Preventive Medicine, University of Southern California, Los Angeles, United States of America.

出版信息

Genet Epidemiol. 2016 Jul;40(5):394-403. doi: 10.1002/gepi.21977. Epub 2016 May 27.

Abstract

A genome-wide association study (GWAS) typically is focused on detecting marginal genetic effects. However, many complex traits are likely to be the result of the interplay of genes and environmental factors. These SNPs may have a weak marginal effect and thus unlikely to be detected from a scan of marginal effects, but may be detectable in a gene-environment (G × E) interaction analysis. However, a genome-wide interaction scan (GWIS) using a standard test of G × E interaction is known to have low power, particularly when one corrects for testing multiple SNPs. Two 2-step methods for GWIS have been previously proposed, aimed at improving efficiency by prioritizing SNPs most likely to be involved in a G × E interaction using a screening step. For a quantitative trait, these include a method that screens on marginal effects [Kooperberg and Leblanc, 2008] and a method that screens on variance heterogeneity by genotype [Paré et al., 2010] In this paper, we show that the Paré et al. approach has an inflated false-positive rate in the presence of an environmental marginal effect, and we propose an alternative that remains valid. We also propose a novel 2-step approach that combines the two screening approaches, and provide simulations demonstrating that the new method can outperform other GWIS approaches. Application of this method to a G × Hispanic-ethnicity scan for childhood lung function reveals a SNP near the MARCO locus that was not identified by previous marginal-effect scans.

摘要

全基因组关联研究(GWAS)通常专注于检测边际遗传效应。然而,许多复杂性状可能是基因与环境因素相互作用的结果。这些单核苷酸多态性(SNP)可能具有较弱的边际效应,因此通过边际效应扫描不太可能检测到,但在基因 - 环境(G×E)相互作用分析中可能可被检测到。然而,使用标准的G×E相互作用检验进行全基因组相互作用扫描(GWIS)已知功效较低,尤其是在对多个SNP进行检验校正时。先前已提出两种用于GWIS的两步法,旨在通过使用筛选步骤对最有可能参与G×E相互作用的SNP进行优先级排序来提高效率。对于数量性状,这些方法包括一种基于边际效应进行筛选的方法[库珀伯格和勒布朗,2008年]以及一种基于基因型方差异质性进行筛选的方法[帕雷等人,2010年]。在本文中,我们表明在存在环境边际效应的情况下,帕雷等人的方法具有过高的假阳性率,并且我们提出了一种仍然有效的替代方法。我们还提出了一种结合两种筛选方法的新型两步法,并通过模拟证明新方法可以优于其他GWIS方法。将此方法应用于针对儿童肺功能的G×西班牙裔种族扫描中,发现了MARCO基因座附近的一个SNP,该SNP在先前的边际效应扫描中未被识别。

相似文献

1
Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.
Genet Epidemiol. 2016 Jul;40(5):394-403. doi: 10.1002/gepi.21977. Epub 2016 May 27.
2
Finding novel genes by testing G × E interactions in a genome-wide association study.
Genet Epidemiol. 2013 Sep;37(6):603-13. doi: 10.1002/gepi.21748. Epub 2013 Jul 19.
3
Improved two-step testing of genome-wide gene-environment interactions.
Genet Epidemiol. 2023 Mar;47(2):152-166. doi: 10.1002/gepi.22509. Epub 2022 Dec 26.
4
Sample size requirements to detect gene-environment interactions in genome-wide association studies.
Genet Epidemiol. 2011 Apr;35(3):201-10. doi: 10.1002/gepi.20569. Epub 2011 Feb 9.
5
Detecting genetic association through shortest paths in a bidirected graph.
Genet Epidemiol. 2017 Sep;41(6):481-497. doi: 10.1002/gepi.22051. Epub 2017 Jun 19.
7
Using Genetic Marginal Effects to Study Gene-Environment Interactions with GWAS Data.
Behav Genet. 2021 May;51(3):358-373. doi: 10.1007/s10519-021-10058-8. Epub 2021 Apr 26.
8
Efficient two-step testing of gene-gene interactions in genome-wide association studies.
Genet Epidemiol. 2013 Jul;37(5):440-51. doi: 10.1002/gepi.21720. Epub 2013 Apr 30.
10
Two-step hypothesis testing to detect gene-environment interactions in a genome-wide scan with a survival endpoint.
Stat Med. 2022 Apr 30;41(9):1644-1657. doi: 10.1002/sim.9319. Epub 2022 Jan 24.

引用本文的文献

1
Pathway polygenic risk scores (pPRS) for the analysis of gene-environment interaction.
PLoS Genet. 2025 Aug 5;21(8):e1011543. doi: 10.1371/journal.pgen.1011543. eCollection 2025 Aug.
2
Pathway Polygenic Risk Scores (pPRS) for the Analysis of Gene-environment Interaction.
bioRxiv. 2024 Dec 19:2024.12.16.628610. doi: 10.1101/2024.12.16.628610.
4
Genome-Wide Interaction Study of Dietary Intake and Colorectal Cancer Risk in the UK Biobank.
JAMA Netw Open. 2024 Feb 5;7(2):e240465. doi: 10.1001/jamanetworkopen.2024.0465.
6
Whole Person Modeling: a transdisciplinary approach to mental health research.
Discov Ment Health. 2023;3(1):16. doi: 10.1007/s44192-023-00041-6. Epub 2023 Aug 24.
7
Molecular mechanisms of environmental exposures and human disease.
Nat Rev Genet. 2023 May;24(5):332-344. doi: 10.1038/s41576-022-00569-3. Epub 2023 Jan 30.
8
Improved two-step testing of genome-wide gene-environment interactions.
Genet Epidemiol. 2023 Mar;47(2):152-166. doi: 10.1002/gepi.22509. Epub 2022 Dec 26.
9
Education interacts with genetic variants near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C to confer susceptibility to myopia.
PLoS Genet. 2022 Nov 17;18(11):e1010478. doi: 10.1371/journal.pgen.1010478. eCollection 2022 Nov.
10
A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables.
PLoS Genet. 2022 Nov 16;18(11):e1010464. doi: 10.1371/journal.pgen.1010464. eCollection 2022 Nov.

本文引用的文献

1
Association of improved air quality with lung development in children.
N Engl J Med. 2015 Mar 5;372(10):905-13. doi: 10.1056/NEJMoa1414123.
2
Finding novel genes by testing G × E interactions in a genome-wide association study.
Genet Epidemiol. 2013 Sep;37(6):603-13. doi: 10.1002/gepi.21748. Epub 2013 Jul 19.
3
Powerful cocktail methods for detecting genome-wide gene-environment interaction.
Genet Epidemiol. 2012 Apr;36(3):183-94. doi: 10.1002/gepi.21610.
4
The mystery of missing heritability: Genetic interactions create phantom heritability.
Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1193-8. doi: 10.1073/pnas.1119675109. Epub 2012 Jan 5.
5
Detection of common single nucleotide polymorphisms synthesizing quantitative trait association of rarer causal variants.
Genome Res. 2011 Jul;21(7):1122-30. doi: 10.1101/gr.115832.110. Epub 2011 Mar 25.
6
Sample size requirements to detect gene-environment interactions in genome-wide association studies.
Genet Epidemiol. 2011 Apr;35(3):201-10. doi: 10.1002/gepi.20569. Epub 2011 Feb 9.
8
9
Finding the missing heritability of complex diseases.
Nature. 2009 Oct 8;461(7265):747-53. doi: 10.1038/nature08494.
10
Variation in the GST mu locus and tobacco smoke exposure as determinants of childhood lung function.
Am J Respir Crit Care Med. 2009 Apr 1;179(7):601-7. doi: 10.1164/rccm.200809-1384OC. Epub 2009 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验