Zhang Pingye, Lewinger Juan Pablo, Conti David, Morrison John L, Gauderman W James
Department of Preventive Medicine, University of Southern California, Los Angeles, United States of America.
Genet Epidemiol. 2016 Jul;40(5):394-403. doi: 10.1002/gepi.21977. Epub 2016 May 27.
A genome-wide association study (GWAS) typically is focused on detecting marginal genetic effects. However, many complex traits are likely to be the result of the interplay of genes and environmental factors. These SNPs may have a weak marginal effect and thus unlikely to be detected from a scan of marginal effects, but may be detectable in a gene-environment (G × E) interaction analysis. However, a genome-wide interaction scan (GWIS) using a standard test of G × E interaction is known to have low power, particularly when one corrects for testing multiple SNPs. Two 2-step methods for GWIS have been previously proposed, aimed at improving efficiency by prioritizing SNPs most likely to be involved in a G × E interaction using a screening step. For a quantitative trait, these include a method that screens on marginal effects [Kooperberg and Leblanc, 2008] and a method that screens on variance heterogeneity by genotype [Paré et al., 2010] In this paper, we show that the Paré et al. approach has an inflated false-positive rate in the presence of an environmental marginal effect, and we propose an alternative that remains valid. We also propose a novel 2-step approach that combines the two screening approaches, and provide simulations demonstrating that the new method can outperform other GWIS approaches. Application of this method to a G × Hispanic-ethnicity scan for childhood lung function reveals a SNP near the MARCO locus that was not identified by previous marginal-effect scans.
全基因组关联研究(GWAS)通常专注于检测边际遗传效应。然而,许多复杂性状可能是基因与环境因素相互作用的结果。这些单核苷酸多态性(SNP)可能具有较弱的边际效应,因此通过边际效应扫描不太可能检测到,但在基因 - 环境(G×E)相互作用分析中可能可被检测到。然而,使用标准的G×E相互作用检验进行全基因组相互作用扫描(GWIS)已知功效较低,尤其是在对多个SNP进行检验校正时。先前已提出两种用于GWIS的两步法,旨在通过使用筛选步骤对最有可能参与G×E相互作用的SNP进行优先级排序来提高效率。对于数量性状,这些方法包括一种基于边际效应进行筛选的方法[库珀伯格和勒布朗,2008年]以及一种基于基因型方差异质性进行筛选的方法[帕雷等人,2010年]。在本文中,我们表明在存在环境边际效应的情况下,帕雷等人的方法具有过高的假阳性率,并且我们提出了一种仍然有效的替代方法。我们还提出了一种结合两种筛选方法的新型两步法,并通过模拟证明新方法可以优于其他GWIS方法。将此方法应用于针对儿童肺功能的G×西班牙裔种族扫描中,发现了MARCO基因座附近的一个SNP,该SNP在先前的边际效应扫描中未被识别。