Suppr超能文献

人类外显子芯片最佳实践和联合调用:CHARGE 联盟。

Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium.

机构信息

School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

出版信息

PLoS One. 2013 Jul 12;8(7):e68095. doi: 10.1371/journal.pone.0068095. Print 2013.

Abstract

Genotyping arrays are a cost effective approach when typing previously-identified genetic polymorphisms in large numbers of samples. One limitation of genotyping arrays with rare variants (e.g., minor allele frequency [MAF] <0.01) is the difficulty that automated clustering algorithms have to accurately detect and assign genotype calls. Combining intensity data from large numbers of samples may increase the ability to accurately call the genotypes of rare variants. Approximately 62,000 ethnically diverse samples from eleven Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium cohorts were genotyped with the Illumina HumanExome BeadChip across seven genotyping centers. The raw data files for the samples were assembled into a single project for joint calling. To assess the quality of the joint calling, concordance of genotypes in a subset of individuals having both exome chip and exome sequence data was analyzed. After exclusion of low performing SNPs on the exome chip and non-overlap of SNPs derived from sequence data, genotypes of 185,119 variants (11,356 were monomorphic) were compared in 530 individuals that had whole exome sequence data. A total of 98,113,070 pairs of genotypes were tested and 99.77% were concordant, 0.14% had missing data, and 0.09% were discordant. We report that joint calling allows the ability to accurately genotype rare variation using array technology when large sample sizes are available and best practices are followed. The cluster file from this experiment is available at www.chargeconsortium.com/main/exomechip.

摘要

当需要对大量样本中先前确定的遗传多态性进行分型时,基因分型阵列是一种具有成本效益的方法。 对于罕见变异(例如,次要等位基因频率 [MAF] <0.01)的基因分型阵列,其一个限制是自动化聚类算法难以准确检测和分配基因型。 结合大量样本的强度数据可能会提高准确调用罕见变体基因型的能力。 来自 11 个 CHARGE 联盟队列的大约 62000 个具有种族多样性的样本,在七个基因分型中心使用 Illumina HumanExome BeadChip 进行了基因分型。 将样本的原始数据文件组装到一个单独的项目中进行联合调用。 为了评估联合调用的质量,分析了具有外显子芯片和外显子序列数据的亚组个体中基因型的一致性。 在排除外显子芯片上性能较低的 SNP 并排除源自序列数据的 SNP 重叠之后,在具有全外显子序列数据的 530 个个体中比较了 185119 个变体(11356 个为单态性)的基因型。 总共测试了 98113070 对基因型,其中 99.77%是一致的,0.14%存在缺失数据,0.09%是不一致的。 我们报告说,联合调用允许在可用大量样本并且遵循最佳实践的情况下,使用阵列技术准确地对罕见变异进行基因分型。 该实验的聚类文件可在 www.chargeconsortium.com/main/exomechip 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1c6/3709915/ac5f5b5d124b/pone.0068095.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验