Suppr超能文献

转录因子复合物中预测蛋白质功能类别的简化方法。

Simplified method for predicting a functional class of proteins in transcription factor complexes.

机构信息

King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, Thuwal, Kingdom of Saudi Arabia.

出版信息

PLoS One. 2013 Jul 12;8(7):e68857. doi: 10.1371/journal.pone.0068857. Print 2013.

Abstract

BACKGROUND

Initiation of transcription is essential for most of the cellular responses to environmental conditions and for cell and tissue specificity. This process is regulated through numerous proteins, their ligands and mutual interactions, as well as interactions with DNA. The key such regulatory proteins are transcription factors (TFs) and transcription co-factors (TcoFs). TcoFs are important since they modulate the transcription initiation process through interaction with TFs. In eukaryotes, transcription requires that TFs form different protein complexes with various nuclear proteins. To better understand transcription regulation, it is important to know the functional class of proteins interacting with TFs during transcription initiation. Such information is not fully available, since not all proteins that act as TFs or TcoFs are yet annotated as such, due to generally partial functional annotation of proteins. In this study we have developed a method to predict, using only sequence composition of the interacting proteins, the functional class of human TF binding partners to be (i) TF, (ii) TcoF, or (iii) other nuclear protein. This allows for complementing the annotation of the currently known pool of nuclear proteins. Since only the knowledge of protein sequences is required in addition to protein interaction, the method should be easily applicable to many species.

RESULTS

Based on experimentally validated interactions between human TFs with different TFs, TcoFs and other nuclear proteins, our two classification systems (implemented as a web-based application) achieve high accuracies in distinguishing TFs and TcoFs from other nuclear proteins, and TFs from TcoFs respectively.

CONCLUSION

As demonstrated, given the fact that two proteins are capable of forming direct physical interactions and using only information about their sequence composition, we have developed a completely new method for predicting a functional class of TF interacting protein partners with high precision and accuracy.

摘要

背景

转录的起始对于大多数细胞对环境条件的反应以及细胞和组织特异性都是至关重要的。这个过程通过许多蛋白质、它们的配体和相互作用以及与 DNA 的相互作用来调节。关键的调节蛋白是转录因子(TFs)和转录共因子(TcoFs)。TcoFs 很重要,因为它们通过与 TFs 的相互作用来调节转录起始过程。在真核生物中,转录需要 TFs 与各种核蛋白形成不同的蛋白质复合物。为了更好地理解转录调控,了解在转录起始过程中与 TFs 相互作用的蛋白质的功能类别非常重要。由于通常对蛋白质的功能注释不完整,因此并非所有作为 TFs 或 TcoFs 发挥作用的蛋白质都已被注释为 TFs 或 TcoFs,因此这种信息并不完全可用。在这项研究中,我们开发了一种仅使用相互作用蛋白质的序列组成来预测人类 TF 结合伙伴的功能类别的方法,这些功能类别的蛋白质为(i)TF、(ii)TcoF 或(iii)其他核蛋白。这允许补充当前已知核蛋白池的注释。由于除了蛋白质相互作用之外仅需要蛋白质序列的知识,因此该方法应该很容易适用于许多物种。

结果

基于人类 TFs 与不同 TFs、TcoFs 和其他核蛋白之间的实验验证的相互作用,我们的两个分类系统(实现为基于网络的应用程序)在区分 TF 和 TcoF 与其他核蛋白以及 TF 和 TcoF 方面分别具有很高的准确性。

结论

正如所证明的那样,考虑到两个蛋白质能够形成直接的物理相互作用,并且仅使用有关其序列组成的信息,我们已经开发了一种全新的方法,用于以高精度和准确性预测 TF 相互作用蛋白伙伴的功能类别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d8/3709904/4db6ff13ad8f/pone.0068857.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验