Suppr超能文献

GPCR 信号转导中的精度与灵活性。

Precision vs flexibility in GPCR signaling.

机构信息

Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.

出版信息

J Am Chem Soc. 2013 Aug 21;135(33):12305-12. doi: 10.1021/ja405133k. Epub 2013 Aug 9.

Abstract

The G protein coupled receptor (GPCR) rhodopsin activates the heterotrimeric G protein transducin (Gt) to transmit the light signal into retinal rod cells. The rhodopsin activity is virtually zero in the dark and jumps by more than one billion fold after photon capture. Such perfect switching implies both high fidelity and speed of rhodopsin/Gt coupling. We employed Fourier transform infrared (FTIR) spectroscopy and supporting all-atom molecular dynamics (MD) simulations to study the conformational diversity of rhodopsin in membrane environment and extend the static picture provided by the available crystal structures. The FTIR results show how the equilibria of inactive and active protein states of the receptor (so-called metarhodopsin states) are regulated by the highly conserved E(D)RY and Yx7K(R) motives. The MD data identify an intrinsically unstructured cytoplasmic loop region connecting transmembrane helices 5 and 6 (CL3) and show how each protein state is split into conformational substates. The C-termini of the Gtγ- and Gtα-subunits (GαCT and GγCT), prepared as synthetic peptides, are likely to bind sequentially and at different sites of the active receptor. The peptides have different effects on the receptor conformation. While GγCT stabilizes the active states but preserves CL3 flexibility, GαCT selectively stabilizes a single conformational substate with largely helical CL3, as it is found in crystal structures. Based on these results we propose a mechanism for the fast and precise signal transfer from rhodopsin to Gt, which assumes a stepwise and mutual reduction of their conformational space. The mechanism relies on conserved amino acids and may therefore underlie GPCR/G protein coupling in general.

摘要

G 蛋白偶联受体(GPCR)视紫红质激活异三聚体 G 蛋白转导蛋白(Gt),将光信号传递到视网膜杆状细胞。在黑暗中,视紫红质的活性几乎为零,而在光子捕获后,其活性跃升超过十亿倍。这种完美的转换意味着视紫红质/Gt 偶联具有高保真度和速度。我们采用傅里叶变换红外(FTIR)光谱和全原子分子动力学(MD)模拟来研究膜环境中视紫红质的构象多样性,并扩展现有晶体结构提供的静态图像。FTIR 结果显示了受体(所谓的视黄醛状态)的非活性和活性蛋白状态的平衡如何受到高度保守的 E(D)RY 和 Yx7K(R) 基序的调节。MD 数据确定了连接跨膜螺旋 5 和 6 的内在无规卷曲胞质环区(CL3),并显示了每个蛋白状态如何分裂为构象亚状态。Gtγ-和 Gtα-亚基(GαCT 和 GγCT)的 C 末端被制备为合成肽,可能依次结合并位于活性受体的不同部位。这些肽对受体构象有不同的影响。虽然 GγCT 稳定了活性状态,但保留了 CL3 的灵活性,但 GαCT 选择性地稳定了一个具有大量螺旋 CL3 的单一构象亚状态,就像在晶体结构中发现的那样。基于这些结果,我们提出了一种从视紫红质到 Gt 的快速和精确信号传递机制,该机制假设其构象空间逐步相互减少。该机制依赖于保守的氨基酸,因此可能是 GPCR/G 蛋白偶联的基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验