Suppr超能文献

arrestin-1 指环与两种不同构象的活性视紫红质相互作用。

The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin.

机构信息

From the Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,

From the Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.

出版信息

J Biol Chem. 2018 Mar 23;293(12):4403-4410. doi: 10.1074/jbc.M117.817890. Epub 2018 Jan 23.

Abstract

Signaling of the prototypical G protein-coupled receptor (GPCR) rhodopsin through its cognate G protein transducin (G) is quenched when arrestin binds to the activated receptor. Although the overall architecture of the rhodopsin/arrestin complex is known, many questions regarding its specificity remain unresolved. Here, using FTIR difference spectroscopy and a dual pH/peptide titration assay, we show that rhodopsin maintains certain flexibility upon binding the "finger loop" of visual arrestin (prepared as synthetic peptide ArrFL-1). We found that two distinct complexes can be stabilized depending on the protonation state of E3.49 in the conserved (D)ERY motif. Both complexes exhibit different interaction modes and affinities of ArrFL-1 binding. The plasticity of the receptor within the rhodopsin/ArrFL-1 complex stands in contrast to the complex with the C terminus of the G α-subunit (GαCT), which stabilizes only one specific substate out of the conformational ensemble. However, G α-subunit binding and both ArrFL-1-binding modes involve a direct interaction to conserved R3.50, as determined by site-directed mutagenesis. Our findings highlight the importance of receptor conformational flexibility and cytoplasmic proton uptake for modulation of rhodopsin signaling and thereby extend the picture provided by crystal structures of the rhodopsin/arrestin and rhodopsin/ArrFL-1 complexes. Furthermore, the two binding modes of ArrFL-1 identified here involve motifs of conserved amino acids, which indicates that our results may have elucidated a common modulation mechanism of class A GPCR-G protein/-arrestin signaling.

摘要

当激活的受体与抑制蛋白结合时,典型的 G 蛋白偶联受体(GPCR)视紫红质通过其同源 G 蛋白转导蛋白(G)的信号被抑制。尽管视紫红质/抑制蛋白复合物的整体结构是已知的,但许多关于其特异性的问题仍未得到解决。在这里,我们使用 FTIR 差谱和双 pH/肽滴定测定法,证明视紫红质在与视觉抑制蛋白的“指环”(作为合成肽 ArrFL-1 制备)结合时保持一定的灵活性。我们发现,取决于保守的(D)ERY 基序中 E3.49 的质子化状态,可以稳定两种不同的复合物。这两种复合物都表现出不同的相互作用模式和 ArrFL-1 结合亲和力。与与 Gα 亚基 C 末端(GαCT)的复合物相比,受体在视紫红质/ArrFL-1 复合物中的这种可塑性相反,该复合物仅稳定构象整体中的一个特定亚基。然而,Gα 亚基结合和两种 ArrFL-1 结合模式都涉及到保守的 R3.50 的直接相互作用,这是通过定点突变确定的。我们的发现强调了受体构象灵活性和细胞质质子摄取对于调节视紫红质信号的重要性,并扩展了视紫红质/抑制蛋白和视紫红质/ArrFL-1 复合物晶体结构提供的图像。此外,这里确定的两种 ArrFL-1 结合模式涉及保守氨基酸的基序,这表明我们的结果可能阐明了 A 类 GPCR-G 蛋白/抑制蛋白信号转导的常见调节机制。

相似文献

1
The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin.
J Biol Chem. 2018 Mar 23;293(12):4403-4410. doi: 10.1074/jbc.M117.817890. Epub 2018 Jan 23.
2
Precision vs flexibility in GPCR signaling.
J Am Chem Soc. 2013 Aug 21;135(33):12305-12. doi: 10.1021/ja405133k. Epub 2013 Aug 9.
3
Formation and decay of the arrestin·rhodopsin complex in native disc membranes.
J Biol Chem. 2015 May 15;290(20):12919-28. doi: 10.1074/jbc.M114.620898. Epub 2015 Apr 6.
4
Crystal structure of a common GPCR-binding interface for G protein and arrestin.
Nat Commun. 2014 Sep 10;5:4801. doi: 10.1038/ncomms5801.
5
Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin.
Methods Enzymol. 2015;556:563-608. doi: 10.1016/bs.mie.2014.12.014. Epub 2015 Mar 6.
6
A Novel Polar Core and Weakly Fixed C-Tail in Squid Arrestin Provide New Insight into Interaction with Rhodopsin.
J Mol Biol. 2018 Oct 19;430(21):4102-4118. doi: 10.1016/j.jmb.2018.08.009. Epub 2018 Aug 16.
7
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.
9
Phosphorylation-dependent conformational changes of arrestin in the rhodopsin-arrestin complex.
Phys Chem Chem Phys. 2020 May 7;22(17):9330-9338. doi: 10.1039/d0cp00473a. Epub 2020 Apr 20.
10
The arrestin-bound conformation and dynamics of the phosphorylated carboxy-terminal region of rhodopsin.
FEBS Lett. 2004 Apr 30;564(3):307-11. doi: 10.1016/S0014-5793(04)00226-1.

引用本文的文献

1
Ligand efficacy modulates conformational dynamics of the µ-opioid receptor.
Nature. 2024 May;629(8011):474-480. doi: 10.1038/s41586-024-07295-2. Epub 2024 Apr 10.
2
DEER Analysis of GPCR Conformational Heterogeneity.
Biomolecules. 2021 May 22;11(6):778. doi: 10.3390/biom11060778.
3
Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2.
Nat Commun. 2021 Apr 22;12(1):2396. doi: 10.1038/s41467-021-22731-x.
4
5
Capturing Peptide-GPCR Interactions and Their Dynamics.
Molecules. 2020 Oct 15;25(20):4724. doi: 10.3390/molecules25204724.
6
Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations.
Cell. 2019 Jan 24;176(3):468-478.e11. doi: 10.1016/j.cell.2018.12.005. Epub 2019 Jan 10.

本文引用的文献

1
Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.
Cell. 2017 Jul 27;170(3):457-469.e13. doi: 10.1016/j.cell.2017.07.002.
2
Structural mechanism of arrestin activation.
Curr Opin Struct Biol. 2017 Aug;45:160-169. doi: 10.1016/j.sbi.2017.05.001. Epub 2017 Jun 7.
3
Conformational equilibria of light-activated rhodopsin in nanodiscs.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):E3268-E3275. doi: 10.1073/pnas.1620405114. Epub 2017 Apr 3.
4
Decay of an active GPCR: Conformational dynamics govern agonist rebinding and persistence of an active, yet empty, receptor state.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11961-11966. doi: 10.1073/pnas.1606347113. Epub 2016 Oct 4.
5
GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling.
Cell. 2016 Aug 11;166(4):907-919. doi: 10.1016/j.cell.2016.07.004. Epub 2016 Aug 4.
6
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.
7
Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin.
Methods Enzymol. 2015;556:563-608. doi: 10.1016/bs.mie.2014.12.014. Epub 2015 Mar 6.
8
Formation and decay of the arrestin·rhodopsin complex in native disc membranes.
J Biol Chem. 2015 May 15;290(20):12919-28. doi: 10.1074/jbc.M114.620898. Epub 2015 Apr 6.
9
Crystal structure of a common GPCR-binding interface for G protein and arrestin.
Nat Commun. 2014 Sep 10;5:4801. doi: 10.1038/ncomms5801.
10
Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR).
J Biol Chem. 2014 May 16;289(20):14211-24. doi: 10.1074/jbc.M114.548131. Epub 2014 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验