Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Nature. 2013 Aug 1;500(7460):77-80. doi: 10.1038/nature12403. Epub 2013 Jul 24.
Variability of regenerative potential among animals has long perplexed biologists. On the basis of their exceptional regenerative abilities, planarians have become important models for understanding the molecular basis of regeneration. However, planarian species with limited regenerative abilities are also found. Despite the importance of understanding the differences between closely related, regenerating and non-regenerating organisms, few studies have focused on the evolutionary loss of regeneration, and the molecular mechanisms leading to such regenerative loss remain obscure. Here we examine Procotyla fluviatilis, a planarian with restricted ability to replace missing tissues, using next-generation sequencing to define the gene expression programs active in regeneration-permissive and regeneration-deficient tissues. We found that Wnt signalling is aberrantly activated in regeneration-deficient tissues. Notably, downregulation of canonical Wnt signalling in regeneration-deficient regions restores regenerative abilities: blastemas form and new heads regenerate in tissues that normally never regenerate. This work reveals that manipulating a single signalling pathway can reverse the evolutionary loss of regenerative potential.
动物再生能力的变异性长期以来一直困扰着生物学家。基于它们出色的再生能力,水螅成为理解再生分子基础的重要模型。然而,也发现了具有有限再生能力的水螅物种。尽管了解密切相关的、具有再生能力和无再生能力的生物之间的差异非常重要,但很少有研究关注再生能力的进化丧失,导致这种再生丧失的分子机制仍然不清楚。在这里,我们使用下一代测序来检查具有有限组织替换能力的淡水涡虫,以定义在再生允许和再生缺陷组织中活跃的基因表达程序。我们发现 Wnt 信号在再生缺陷组织中异常激活。值得注意的是,下调再生缺陷区域的经典 Wnt 信号可以恢复再生能力:芽基形成,新的头部在通常不能再生的组织中再生。这项工作表明,操纵单一信号通路可以逆转再生潜力的进化丧失。