Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA.
Phys Rev Lett. 2013 Jul 12;111(2):028103. doi: 10.1103/PhysRevLett.111.028103. Epub 2013 Jul 11.
We demonstrate the ability of simultaneously determining a protein's folding pathway and structure using a properly formulated model without prior knowledge of the native structure. Our model employs a natural coordinate system for describing proteins and a search strategy inspired by the observation that real proteins fold in a sequential fashion by incrementally stabilizing nativelike substructures or "foldons." Comparable folding pathways and structures are obtained for the twelve proteins recently studied using atomistic molecular dynamics simulations [K. Lindorff-Larsen, S. Piana, R. O. Dror, D. E. Shaw, Science 334, 517 (2011)], with our calculations running several orders of magnitude faster. We find that nativelike propensities in the unfolded state do not necessarily determine the order of structure formation, a departure from a major conclusion of the molecular dynamics study. Instead, our results support a more expansive view wherein intrinsic local structural propensities may be enhanced or overridden in the folding process by environmental context. The success of our search strategy validates it as an expedient mechanism for folding both in silico and in vivo.
我们证明了在没有天然结构先验知识的情况下,通过适当设计的模型,同时确定蛋白质折叠途径和结构的能力。我们的模型使用自然坐标系统来描述蛋白质,并采用一种搜索策略,其灵感来自于这样一种观察结果,即实际蛋白质通过逐步稳定天然类似的亚结构或“折叠单元”以顺序方式折叠。对于最近使用原子分子动力学模拟研究的 12 种蛋白质,我们得到了可比的折叠途径和结构[K. Lindorff-Larsen、S. Piana、R. O. Dror、D. E. Shaw,Science 334, 517(2011)],而我们的计算速度要快几个数量级。我们发现,在未折叠状态下的天然倾向不一定决定结构形成的顺序,这与分子动力学研究的一个主要结论不同。相反,我们的结果支持了一种更广泛的观点,即在折叠过程中,内在的局部结构倾向可能会被环境背景增强或超越。我们的搜索策略的成功验证了它作为一种在计算和体内折叠的有效机制。