Département des Neurosciences Cliniques, Laboratoire de Recherche en Neuroimagerie, Centre Hospitalier Universitaire Vaudois, Université de Lausanne, Lausanne, Switzerland; Department of Neurology, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland.
Neurobiol Aging. 2013 Dec;34(12):2815-26. doi: 10.1016/j.neurobiolaging.2013.06.015. Epub 2013 Jul 26.
Computational anatomy with magnetic resonance imaging (MRI) is well established as a noninvasive biomarker of Alzheimer's disease (AD); however, there is less certainty about its dependency on the staging of AD. We use classical group analyses and automated machine learning classification of standard structural MRI scans to investigate AD diagnostic accuracy from the preclinical phase to clinical dementia. Longitudinal data from the Alzheimer's Disease Neuroimaging Initiative were stratified into 4 groups according to the clinical status-(1) AD patients; (2) mild cognitive impairment (MCI) converters; (3) MCI nonconverters; and (4) healthy controls-and submitted to a support vector machine. The obtained classifier was significantly above the chance level (62%) for detecting AD already 4 years before conversion from MCI. Voxel-based univariate tests confirmed the plausibility of our findings detecting a distributed network of hippocampal-temporoparietal atrophy in AD patients. We also identified a subgroup of control subjects with brain structure and cognitive changes highly similar to those observed in AD. Our results indicate that computational anatomy can detect AD substantially earlier than suggested by current models. The demonstrated differential spatial pattern of atrophy between correctly and incorrectly classified AD patients challenges the assumption of a uniform pathophysiological process underlying clinically identified AD.
磁共振成像(MRI)的计算解剖学已被确立为阿尔茨海默病(AD)的一种非侵入性生物标志物;然而,其对 AD 分期的依赖性仍存在较大不确定性。我们使用经典的组分析和标准结构 MRI 扫描的自动化机器学习分类,来研究从临床前期到痴呆的 AD 诊断准确性。根据临床状态,将阿尔茨海默病神经影像学倡议的纵向数据分为 4 组:(1)AD 患者;(2)轻度认知障碍(MCI)转化者;(3)MCI 非转化者;和(4)健康对照者,并提交给支持向量机。获得的分类器在 MCI 转化前 4 年检测 AD 的准确率明显高于随机水平(62%)。基于体素的单变量检验证实了我们的发现的合理性,即在 AD 患者中检测到海马-颞顶叶萎缩的分布式网络。我们还确定了一个对照组亚组,其大脑结构和认知变化与 AD 中观察到的高度相似。我们的结果表明,计算解剖学可以比目前的模型更早地检测到 AD。正确和错误分类的 AD 患者之间的萎缩差异空间模式表明,临床确定的 AD 背后的病理生理过程并不统一。