Suppr超能文献

基于定量、多参数 MRI 的分类方法在社区人群中检测轻度认知障碍。

Detection of mild cognitive impairment in a community-dwelling population using quantitative, multiparametric MRI-based classification.

机构信息

Institute of Psychology, Leiden University, Leiden, the Netherlands.

Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.

出版信息

Hum Brain Mapp. 2019 Jun 15;40(9):2711-2722. doi: 10.1002/hbm.24554. Epub 2019 Feb 25.

Abstract

Early and accurate mild cognitive impairment (MCI) detection within a heterogeneous, nonclinical population is needed to improve care for persons at risk of developing dementia. Magnetic resonance imaging (MRI)-based classification may aid early diagnosis of MCI, but has only been applied within clinical cohorts. We aimed to determine the generalizability of MRI-based classification probability scores to detect MCI on an individual basis within a general population. To determine classification probability scores, an AD, mild-AD, and moderate-AD detection model were created with anatomical and diffusion MRI measures calculated from a clinical Alzheimer's Disease (AD) cohort and subsequently applied to a population-based cohort with 48 MCI and 617 normal aging subjects. Each model's ability to detect MCI was quantified using area under the receiver operating characteristic curve (AUC) and compared with an MCI detection model trained and applied to the population-based cohort. The AD-model and mild-AD identified MCI from controls better than chance level (AUC = 0.600, p = 0.025; AUC = 0.619, p = 0.008). In contrast, the moderate-AD-model was not able to separate MCI from normal aging (AUC = 0.567, p = 0.147). The MCI-model was able to separate MCI from controls better than chance (p = 0.014) with mean AUC values comparable with the AD-model (AUC = 0.611, p = 1.0). Within our population-based cohort, classification models detected MCI better than chance. Nevertheless, classification performance rates were moderate and may be insufficient to facilitate robust MRI-based MCI detection on an individual basis. Our data indicate that multiparametric MRI-based classification algorithms, that are effective in clinical cohorts, may not straightforwardly translate to applications in a general population.

摘要

早期准确地检测出异质、非临床人群中的轻度认知障碍(MCI),有助于改善处于痴呆风险中的人群的护理。基于磁共振成像(MRI)的分类可能有助于早期诊断 MCI,但仅在临床队列中应用过。我们旨在确定基于 MRI 的分类概率评分在一般人群中个体基础上检测 MCI 的可推广性。为了确定分类概率评分,我们使用从临床阿尔茨海默病(AD)队列计算的解剖和弥散 MRI 指标,为一个基于人群的队列创建了 AD、轻度 AD 和中度 AD 检测模型,该队列有 48 名 MCI 和 617 名正常衰老个体。使用受试者工作特征曲线(ROC)下的面积(AUC)量化每个模型检测 MCI 的能力,并与基于人群的队列中训练和应用的 MCI 检测模型进行比较。AD 模型和轻度 AD 能够比机会水平更好地识别出 MCI (AUC=0.600,p=0.025;AUC=0.619,p=0.008)。相比之下,中度 AD 模型无法将 MCI 与正常衰老区分开来(AUC=0.567,p=0.147)。MCI 模型能够比机会水平更好地将 MCI 与对照组区分开来(p=0.014),其平均 AUC 值与 AD 模型相当(AUC=0.611,p=1.0)。在我们的基于人群的队列中,分类模型比机会水平更能检测到 MCI。然而,分类性能率是中等的,可能不足以促进基于个体的稳健 MRI 检测。我们的数据表明,在临床队列中有效的基于多参数 MRI 的分类算法可能不会直接转化为在一般人群中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af6b/6865746/f04e6867880a/HBM-40-2711-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验