Suppr超能文献

基于卷积神经网络的阿尔茨海默病分类,使用基于混合增强独立成分分析的T2加权磁共振成像分割灰质并结合临床评估。

Convolution neural network-based Alzheimer's disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation.

作者信息

Basheera Shaik, Sai Ram M Satya

机构信息

Department of ECE, Acharya Nagarjuna University College of Engineering and Technology, Guntur, India.

出版信息

Alzheimers Dement (N Y). 2019 Dec 28;5:974-986. doi: 10.1016/j.trci.2019.10.001. eCollection 2019.

Abstract

In recent times, accurate and early diagnosis of Alzheimer's disease (AD) plays a vital role in patient care and further treatment. Predicting AD from mild cognitive impairment (MCI) and cognitive normal (CN) has become popular. Neuroimaging and computer-aided diagnosis techniques are used for classification of AD by physicians in the early stage. Most of the previous machine learning techniques work on handpicked features. In the recent days, deep learning has been applied for many medical image applications. Existing deep learning systems work on raw magnetic resonance imaging (MRI) images and cortical surface as an input to the convolution neural network (CNN) to perform classification of AD. AD affects the brain volume and changes the gray matter texture. In our work, we used 1820 T2-weighted brain magnetic resonance volumes including 635 AD MRIs, 548 MCI MRIs, and 637 CN MRIs, sliced into 18,017 voxels. We proposed an approach to extract the gray matter from brain voxels and perform the classification using the CNN. A Gaussian filter is used to enhance the voxels, and skull stripping algorithm is used to remove the irrelevant tissues from enhanced voxels. Then, those voxels are segmented by hybrid enhanced independent component analysis. Segmented gray matter is used as an input to the CNN. We performed clinical valuation using our proposed approach and achieved 90.47% accuracy, 86.66% of recall, and 92.59% precision.

摘要

近年来,准确且早期诊断阿尔茨海默病(AD)在患者护理及后续治疗中发挥着至关重要的作用。从轻度认知障碍(MCI)和认知正常(CN)状态预测AD已成为研究热点。神经影像学和计算机辅助诊断技术被医生用于AD早期阶段的分类。以往大多数机器学习技术基于精心挑选的特征进行工作。近年来,深度学习已应用于许多医学图像应用领域。现有的深度学习系统将原始磁共振成像(MRI)图像和皮质表面作为卷积神经网络(CNN)的输入,以进行AD的分类。AD会影响脑容量并改变灰质纹理。在我们的工作中,我们使用了1820个T2加权脑磁共振容积数据,其中包括635个AD的MRI数据、548个MCI的MRI数据和637个CN的MRI数据,这些数据被切片成18017个体素。我们提出了一种从脑体素中提取灰质并使用CNN进行分类的方法。使用高斯滤波器增强体素,并使用去颅骨算法从增强后的体素中去除无关组织。然后,通过混合增强独立成分分析对这些体素进行分割。分割后的灰质用作CNN的输入。我们使用所提出的方法进行临床评估,准确率达到90.47%,召回率为86.66%,精确率为92.59%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/127c/6944731/5490cdec67da/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验