Suppr超能文献

β 频带感觉刺激通过增强纹状体网络和步行动作之间的耦合来增强步态节律性。

Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement.

机构信息

- Department of Biomedical Engineering, Boston University, Boston, MA, USA.

- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.

出版信息

Nat Commun. 2024 Sep 27;15(1):8336. doi: 10.1038/s41467-024-52664-0.

Abstract

Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. Stepping-related delta-rhythmic neural activity is coupled to beta (10-30 Hz) frequency dynamics that are also prominent in sensorimotor circuits. We explored how beta-frequency sensory stimulation influences stepping and dorsal striatal regulation of stepping. We delivered audiovisual stimulation at 10 or 145 Hz to mice voluntarily locomoting, while recording locomotion, cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.

摘要

踏步运动是 delta(1-4 Hz)节律性的,依赖于感觉输入。与踏步相关的 delta 节律性神经活动与 beta(10-30 Hz)频率动态相关,这些动态在感觉运动回路中也很突出。我们探索了 beta 频率感觉刺激如何影响踏步以及背侧纹状体对踏步的调节。我们在自愿运动的小鼠身上以 10 或 145 Hz 的频率给予视听刺激,同时记录运动、细胞钙动力学和局部场电位(LFPs)。我们发现,10 Hz 刺激而非 145 Hz 刺激明显使纹状体 LFPs 同步化。尽管两种频率的刺激都促进了运动和纹状体网络的去同步化,但只有 10 Hz 刺激增强了踏步的 delta 节律性,并加强了踏步与纹状体 LFP delta 和 beta 振荡之间的耦合。这些结果表明,更高频率的感觉刺激可以调节更低频率的纹状体神经动力学,并改善踏步的节律性,突出了非侵入性 beta 频率感觉刺激在改善步态方面的转化潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1e6/11437063/168e1a93f4fe/41467_2024_52664_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验