Suppr超能文献

GNE:一种通过整合生物信息进行基因网络推断的深度学习框架。

GNE: a deep learning framework for gene network inference by aggregating biological information.

作者信息

Kc Kishan, Li Rui, Cui Feng, Yu Qi, Haake Anne R

机构信息

Golisano College of Computing and Information Sciences, Rochester Institute of Technology, 20 Lomb Memorial Drive, Rochester, New York, 14623, USA.

Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, New York, 14623, USA.

出版信息

BMC Syst Biol. 2019 Apr 5;13(Suppl 2):38. doi: 10.1186/s12918-019-0694-y.

Abstract

BACKGROUND

The topological landscape of gene interaction networks provides a rich source of information for inferring functional patterns of genes or proteins. However, it is still a challenging task to aggregate heterogeneous biological information such as gene expression and gene interactions to achieve more accurate inference for prediction and discovery of new gene interactions. In particular, how to generate a unified vector representation to integrate diverse input data is a key challenge addressed here.

RESULTS

We propose a scalable and robust deep learning framework to learn embedded representations to unify known gene interactions and gene expression for gene interaction predictions. These low- dimensional embeddings derive deeper insights into the structure of rapidly accumulating and diverse gene interaction networks and greatly simplify downstream modeling. We compare the predictive power of our deep embeddings to the strong baselines. The results suggest that our deep embeddings achieve significantly more accurate predictions. Moreover, a set of novel gene interaction predictions are validated by up-to-date literature-based database entries.

CONCLUSION

The proposed model demonstrates the importance of integrating heterogeneous information about genes for gene network inference. GNE is freely available under the GNU General Public License and can be downloaded from GitHub ( https://github.com/kckishan/GNE ).

摘要

背景

基因相互作用网络的拓扑结构为推断基因或蛋白质的功能模式提供了丰富的信息来源。然而,整合诸如基因表达和基因相互作用等异质生物信息以实现对新基因相互作用的预测和发现进行更准确的推断,仍然是一项具有挑战性的任务。特别是,如何生成统一的向量表示以整合不同的输入数据是本文解决的关键挑战。

结果

我们提出了一个可扩展且强大的深度学习框架,用于学习嵌入表示,以统一已知的基因相互作用和基因表达,用于基因相互作用预测。这些低维嵌入能更深入地洞察快速积累且多样的基因相互作用网络的结构,并极大地简化下游建模。我们将深度嵌入的预测能力与强大的基线进行比较。结果表明,我们的深度嵌入实现了显著更准确的预测。此外,一组新的基因相互作用预测通过最新的基于文献的数据库条目得到了验证。

结论

所提出的模型证明了整合基因的异质信息用于基因网络推断的重要性。GNE根据GNU通用公共许可证免费提供,可从GitHub(https://github.com/kckishan/GNE)下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec1d/6449883/3317a5a26cb1/12918_2019_694_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验