Suppr超能文献

人类蛋白质相互作用网络的潜在几何结构。

The latent geometry of the human protein interaction network.

机构信息

Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg Universität, Mainz, Germany.

Institute of Molecular Biology, Mainz, Germany.

出版信息

Bioinformatics. 2018 Aug 15;34(16):2826-2834. doi: 10.1093/bioinformatics/bty206.

Abstract

MOTIVATION

A series of recently introduced algorithms and models advocates for the existence of a hyperbolic geometry underlying the network representation of complex systems. Since the human protein interaction network (hPIN) has a complex architecture, we hypothesized that uncovering its latent geometry could ease challenging problems in systems biology, translating them into measuring distances between proteins.

RESULTS

We embedded the hPIN to hyperbolic space and found that the inferred coordinates of nodes capture biologically relevant features, like protein age, function and cellular localization. This means that the representation of the hPIN in the two-dimensional hyperbolic plane offers a novel and informative way to visualize proteins and their interactions. We then used these coordinates to compute hyperbolic distances between proteins, which served as likelihood scores for the prediction of plausible protein interactions. Finally, we observed that proteins can efficiently communicate with each other via a greedy routing process, guided by the latent geometry of the hPIN. We show that these efficient communication channels can be used to determine the core members of signal transduction pathways and to study how system perturbations impact their efficiency.

AVAILABILITY AND IMPLEMENTATION

An R implementation of our network embedder is available at https://github.com/galanisl/NetHypGeom. Also, a web tool for the geometric analysis of the hPIN accompanies this text at http://cbdm-01.zdv.uni-mainz.de/~galanisl/gapi.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

最近引入的一系列算法和模型主张,在复杂系统的网络表示下存在双曲几何。由于人类蛋白质相互作用网络 (hPIN) 具有复杂的结构,我们假设揭示其潜在的几何结构可以简化系统生物学中的挑战性问题,将其转化为测量蛋白质之间的距离。

结果

我们将 hPIN 嵌入双曲空间,发现节点的推断坐标捕获了具有生物学意义的特征,如蛋白质年龄、功能和细胞定位。这意味着 hPIN 在二维双曲平面上的表示为可视化蛋白质及其相互作用提供了一种新颖而有用的方式。然后,我们使用这些坐标计算蛋白质之间的双曲距离,作为预测可能的蛋白质相互作用的可能性得分。最后,我们观察到蛋白质可以通过 hPIN 的潜在几何结构指导的贪婪路由过程有效地相互通信。我们表明,这些有效的通信渠道可用于确定信号转导途径的核心成员,并研究系统干扰如何影响它们的效率。

可用性和实现

我们的网络嵌入器的 R 实现可在 https://github.com/galanisl/NetHypGeom 上获得。此外,此文本还附有用于 hPIN 几何分析的网络工具,可在 http://cbdm-01.zdv.uni-mainz.de/~galanisl/gapi 上访问。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d691/6084611/11035b509345/bty206f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验