Suppr超能文献

通过抗真菌化学增敏作用靶向隐球菌的线粒体呼吸链:控制非发酵病原体的模型。

Targeting the mitochondrial respiratory chain of Cryptococcus through antifungal chemosensitization: a model for control of non-fermentative pathogens.

机构信息

Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, CA 94710, USA.

出版信息

Molecules. 2013 Jul 25;18(8):8873-94. doi: 10.3390/molecules18088873.

Abstract

Enhanced control of species of Cryptococcus, non-fermentative yeast pathogens, was achieved by chemosensitization through co-application of certain compounds with a conventional antimicrobial drug. The species of Cryptococcus tested showed higher sensitivity to mitochondrial respiratory chain (MRC) inhibition compared to species of Candida. This higher sensitivity results from the inability of Cryptococcus to generate cellular energy through fermentation. To heighten disruption of cellular MRC, octyl gallate (OG) or 2,3-dihydroxybenzaldehyde (2,3-DHBA), phenolic compounds inhibiting mitochondrial functions, were selected as chemosensitizers to pyraclostrobin (PCS; an inhibitor of complex III of MRC). The cryptococci were more susceptible to the chemosensitization (i.e., PCS + OG or 2,3-DHBA) than the Candida with all Cryptococcus strains tested being sensitive to this chemosensitization. Alternatively, only few of the Candida strains showed sensitivity. OG possessed higher chemosensitizing potency than 2,3-DHBA, where the concentration of OG required with the drug to achieve chemosensitizing synergism was much lower than that required of 2,3-DHBA. Bioassays with gene deletion mutants of the model yeast Saccharomyces cerevisiae showed that OG or 2,3-DHBA affect different cellular targets. These assays revealed mitochondrial superoxide dismutase or glutathione homeostasis plays a relatively greater role in fungal tolerance to 2,3-DHBA or OG, respectively. These findings show that application of chemosensitizing compounds that augment MRC debilitation is a promising strategy to antifungal control against yeast pathogens.

摘要

通过与常规抗菌药物联合应用某些化合物进行化学增敏,实现了对隐球菌属、非发酵酵母病原体的更好控制。与念珠菌属相比,测试的隐球菌属对线粒体呼吸链(MRC)抑制的敏感性更高。这种更高的敏感性是由于隐球菌无法通过发酵产生细胞能量。为了更有效地破坏细胞 MRC,选择了抑制线粒体功能的酚类化合物辛基没食子酸(OG)或 2,3-二羟基苯甲醛(2,3-DHBA)作为吡唑醚菌酯(PCS;MRC 复合物 III 的抑制剂)的化学增敏剂。与念珠菌相比,隐球菌对化学增敏(即 PCS+OG 或 2,3-DHBA)更为敏感,所有测试的隐球菌菌株均对这种化学增敏敏感。相比之下,只有少数念珠菌菌株表现出敏感性。OG 比 2,3-DHBA 具有更高的化学增敏作用,与药物联合使用达到化学增敏协同作用所需的 OG 浓度远低于 2,3-DHBA。模型酵母酿酒酵母基因缺失突变体的生物测定显示,OG 或 2,3-DHBA 影响不同的细胞靶标。这些测定表明,线粒体超氧化物歧化酶或谷胱甘肽稳态在真菌对 2,3-DHBA 或 OG 的耐受性中分别发挥相对更大的作用。这些发现表明,应用增强 MRC 削弱的化学增敏化合物是对抗酵母病原体的一种有前途的抗真菌控制策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ce/6270351/0f6f30edc0bc/molecules-18-08873-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验