Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
J Biol Chem. 2012 Jan 6;287(2):1345-60. doi: 10.1074/jbc.M111.304741. Epub 2011 Nov 17.
Initially discovered in Escherichia coli, RuvAB proteins are ubiquitous in bacteria and play a dual role as molecular motor proteins responsible for branch migration of the Holliday junction(s) and reversal of stalled replication forks. Despite mounting genetic evidence for a crucial role of RuvA and RuvB proteins in reversal of stalled replication forks, the mechanistic aspects of this process are still not fully understood. Here, we elucidate the ability of Mycobacterium tuberculosis RuvAB (MtRuvAB) complex to catalyze the reversal of replication forks using a range of DNA replication fork substrates. Our studies show that MtRuvAB, unlike E. coli RuvAB, is able to drive replication fork reversal via the formation of Holliday junction intermediates, suggesting that RuvAB-catalyzed fork reversal involves concerted unwinding and annealing of nascent leading and lagging strands. We also demonstrate the reversal of replication forks carrying hemi-replicated DNA, indicating that MtRuvAB complex-catalyzed fork reversal is independent of symmetry at the fork junction. The fork reversal reaction catalyzed by MtRuvAB is coupled to ATP hydrolysis, is processive, and culminates in the formation of an extended reverse DNA arm. Notably, we found that sequence heterology failed to impede the fork reversal activity of MtRuvAB. We discuss the implications of these results in the context of recognition and processing of varied types of replication fork structures by RuvAB proteins.
最初在大肠杆菌中发现的 RuvAB 蛋白在细菌中普遍存在,它们作为分子马达蛋白具有双重作用,负责 Holliday 连接点的分支迁移和停滞复制叉的反转。尽管越来越多的遗传证据表明 RuvA 和 RuvB 蛋白在停滞复制叉的反转中起着至关重要的作用,但这一过程的机制方面仍未完全理解。在这里,我们阐明了结核分枝杆菌 RuvAB(MtRuvAB)复合物利用一系列 DNA 复制叉底物催化复制叉反转的能力。我们的研究表明,与大肠杆菌 RuvAB 不同,MtRuvAB 能够通过形成 Holliday 连接中间体来驱动复制叉反转,这表明 RuvAB 催化的叉反转涉及新生前导链和滞后链的协同解旋和退火。我们还证明了携带半复制 DNA 的复制叉的反转,表明 MtRuvAB 复合物催化的叉反转不依赖于叉结的对称性。由 MtRuvAB 催化的叉反转反应与 ATP 水解偶联,具有连续性,并最终形成延伸的反向 DNA 臂。值得注意的是,我们发现序列异源性并没有阻碍 MtRuvAB 的叉反转活性。我们讨论了这些结果在 RuvAB 蛋白识别和处理各种类型的复制叉结构方面的意义。