Suppr超能文献

脊髓损伤:我们如何改进其严重程度和预后的分类与量化?

Spinal cord injury: how can we improve the classification and quantification of its severity and prognosis?

作者信息

Krishna Vibhor, Andrews Hampton, Varma Abhay, Mintzer Jacobo, Kindy Mark S, Guest James

机构信息

1 Department of Neurosciences, Medical University of South Carolina , Charleston, South Carolina.

出版信息

J Neurotrauma. 2014 Feb 1;31(3):215-27. doi: 10.1089/neu.2013.2982.

Abstract

The preservation of functional neural tissue after spinal cord injury (SCI) is the basis for spontaneous neurological recovery. Some injured patients in the acute phase have more potential for recovery than others. This fact is problematic for the construction of clinical trials because enrollment of subjects with variable recovery potential makes it difficult to detect effects, requires large sample sizes, and risks Type II errors. In addition, the current methods to assess injury and recovery are non-quantitative and not sensitive. It is likely that therapeutic combinations will be necessary to cause substantially improved function after SCI, thus we need highly sensitive techniques to evaluate changes in motor, sensory, autonomic and other functions. We review several emerging neurophysiological techniques with high sensitivity. Quantitative methods to evaluate residual tissue sparing after severe acute SCI have not entered widespread clinical use. This reduces the ability to correlate structural preservation with clinical outcome following SCI resulting in enrollment of subjects with varying patterns of tissue preservation and injury into clinical trials. We propose that the inclusion of additional measures of injury severity, pattern, and individual genetic characteristics may enable stratification in clinical trials to make the testing of therapeutic interventions more effective and efficient. New imaging techniques to assess tract injury and demyelination and methods to quantify tissue injury, inflammatory markers, and neuroglial biochemical changes may improve the evaluation of injury severity, and the correlation with neurological outcome, and measure the effects of treatment more robustly than is currently possible. The ability to test such a multimodality approach will require a high degree of collaboration between clinical and research centers and government research support. When the most informative of these assessments is determined, it may be possible to identify patients with substantial recovery potential, improve selection criteria and conduct more efficient clinical trials.

摘要

脊髓损伤(SCI)后功能性神经组织的保存是神经自发恢复的基础。一些急性期受伤的患者比其他患者具有更大的恢复潜力。这一事实给临床试验的开展带来了问题,因为纳入恢复潜力各异的受试者会使检测效果变得困难,需要大样本量,并且存在II类错误的风险。此外,目前评估损伤和恢复情况的方法是非定量的且不敏感。很可能需要多种治疗方法联合使用才能在脊髓损伤后带来功能的显著改善,因此我们需要高度敏感的技术来评估运动、感觉、自主神经及其他功能的变化。我们综述了几种具有高灵敏度的新兴神经生理学技术。评估严重急性脊髓损伤后残余组织保留情况的定量方法尚未广泛应用于临床。这降低了将脊髓损伤后结构保存情况与临床结果相关联的能力,导致在临床试验中纳入了组织保存和损伤模式各异的受试者。我们建议纳入额外的损伤严重程度、模式及个体遗传特征的测量指标,这可能使临床试验能够进行分层,从而使治疗干预的测试更有效率。评估神经束损伤和脱髓鞘的新成像技术以及量化组织损伤、炎症标志物和神经胶质生化变化的方法,可以比目前更有力地改善对损伤严重程度的评估、与神经学结果的相关性以及对治疗效果的测量。测试这种多模态方法的能力将需要临床和研究中心之间高度协作以及政府的研究支持。当确定了这些评估中最具信息价值的方法时,或许就有可能识别出具有显著恢复潜力的患者,改进选择标准并开展更高效的临床试验。

相似文献

2
Patterns of Sacral Sparing Components on Neurologic Recovery in Newly Injured Persons With Traumatic Spinal Cord Injury.
Arch Phys Med Rehabil. 2016 Oct;97(10):1647-55. doi: 10.1016/j.apmr.2016.02.012. Epub 2016 Mar 10.
3
Neurological and functional capacity outcome measures: essential to spinal cord injury clinical trials.
J Rehabil Res Dev. 2005 May-Jun;42(3 Suppl 1):35-41. doi: 10.1682/jrrd.2004.08.0098.
5
Electrophysiological Multimodal Assessments Improve Outcome Prediction in Traumatic Cervical Spinal Cord Injury.
J Neurotrauma. 2018 Dec 15;35(24):2916-2923. doi: 10.1089/neu.2017.5576. Epub 2018 Jul 27.
7
Sacral sparing in SCI: beyond the S4-S5 and anorectal examination.
Spine J. 2012 May;12(5):389-400.e3. doi: 10.1016/j.spinee.2012.03.028. Epub 2012 May 8.
8
Neurologic recovery after traumatic spinal cord injury: data from the Model Spinal Cord Injury Systems.
Arch Phys Med Rehabil. 1999 Nov;80(11):1391-6. doi: 10.1016/s0003-9993(99)90249-6.

引用本文的文献

2
Exploring the Landscape of Biomarkers in Spinal Cord Injury.
Top Spinal Cord Inj Rehabil. 2025 Spring;31(2):1-12. doi: 10.46292/sci24-00076. Epub 2025 Jun 19.
3
Mitochondrial Transplantation/Transfer: Promising Therapeutic Strategies for Spinal Cord Injury.
J Orthop Translat. 2025 May 16;52:441-450. doi: 10.1016/j.jot.2025.04.017. eCollection 2025 May.
5
Predicting motor recovery in tetraplegia during inpatient rehabilitation by motor unit action potentials and stimulated manual motor testing.
J Spinal Cord Med. 2025 May;48(3):385-394. doi: 10.1080/10790268.2025.2452687. Epub 2025 Feb 18.
7
Multivariable Prediction Models for Traumatic Spinal Cord Injury: A Systematic Review.
Top Spinal Cord Inj Rehabil. 2024 Winter;30(1):1-44. doi: 10.46292/sci23-00010. Epub 2024 Feb 29.
8
Modular organization of locomotor networks in people with severe spinal cord injury.
Front Neurosci. 2022 Dec 7;16:1041015. doi: 10.3389/fnins.2022.1041015. eCollection 2022.
9
Differential Recovery of Submodality Touch Neurons and Interareal Communication in Sensory Input-Deprived Area 3b and S2 Cortices.
J Neurosci. 2022 Dec 14;42(50):9330-9342. doi: 10.1523/JNEUROSCI.0034-22.2022. Epub 2022 Nov 15.
10
Spinal Cord Tissue Bridges Validation Study: Predictive Relationships With Sensory Scores Following Cervical Spinal Cord Injury.
Top Spinal Cord Inj Rehabil. 2022 Spring;28(2):111-115. doi: 10.46292/sci21-00018. Epub 2021 Nov 24.

本文引用的文献

1
Brain activation in the acute phase of traumatic spinal cord injury.
Spinal Cord. 2013 Aug;51(8):623-9. doi: 10.1038/sc.2013.41. Epub 2013 May 21.
2
Cerebral activation during the test of spinal cord injury severity in children: an FMRI methodological study.
Top Spinal Cord Inj Rehabil. 2013 Spring;19(2):121-8. doi: 10.1310/sci1902-121.
3
Diagnostic accuracy of diffusion tensor imaging for pediatric cervical spinal cord injury.
Spinal Cord. 2013 Jul;51(7):532-7. doi: 10.1038/sc.2013.36. Epub 2013 Apr 23.
4
Proton magnetic resonance spectroscopy of human cervical spondylosis at 3T.
Spinal Cord. 2013 Jul;51(7):558-63. doi: 10.1038/sc.2013.31. Epub 2013 Apr 16.
5
Imaging of glutamate in the spinal cord using GluCEST.
Neuroimage. 2013 Aug 15;77:262-7. doi: 10.1016/j.neuroimage.2013.03.072. Epub 2013 Apr 9.
6
Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report.
World Neurosurg. 2015 May;83(5):867-78. doi: 10.1016/j.wneu.2013.03.012. Epub 2013 Mar 19.
7
Correlation of magnetic resonance diffusion tensor imaging and clinical findings of cervical myelopathy.
Spine J. 2013 Aug;13(8):867-76. doi: 10.1016/j.spinee.2013.02.005. Epub 2013 Mar 21.
8
Updated Guidelines for the Management of Acute Cervical Spine and Spinal Cord Injury.
Neurosurgery. 2013 Mar;72 Suppl 2:1. doi: 10.1227/NEU.0b013e318276ee7e.
10
A novel porcine model of traumatic thoracic spinal cord injury.
J Neurotrauma. 2013 Feb 1;30(3):142-59. doi: 10.1089/neu.2012.2386. Epub 2013 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验