Suppr超能文献

大一新生心理健康症状和适应水平对网络成瘾的预测:一项对中国男大学生的回顾性嵌套病例对照研究。

Freshman year mental health symptoms and level of adaptation as predictors of Internet addiction: a retrospective nested case-control study of male Chinese college students.

机构信息

Student Mental Health Education and Counseling Center, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, Shaanxi Province, China.

出版信息

Psychiatry Res. 2013 Dec 15;210(2):541-7. doi: 10.1016/j.psychres.2013.07.023. Epub 2013 Jul 26.

Abstract

A retrospective nested case-control study was designed to explore whether freshman year mental health status and level of adaptation are predictors of Internet addiction. The study cohort was 977 college students at a university in northwest China. In the first college year, the students' mental health status and adaptation level were assessed using the Chinese College Student Mental Health Scale (CCSMHS) and the Chinese College Student Adjustment Scale (CCSAS). In the following 1-3 years, 62 Internet-addicted subjects were identified using Young's 8-item diagnostic questionnaire. Controls were matched for demographic characteristics. Using logistic regression analysis, freshman year mental health status, including factors such as somatization, anxiety, depression and self-contempt, and freshman year adaptive problems were found to be causal factors and predictors of Internet addiction. Freshman with features of depression, learning maladaptation and dissatisfaction could be an important target-intervention population for reducing Internet addiction.

摘要

一项回顾性巢式病例对照研究旨在探讨大一心理健康状况和适应水平是否可预测网络成瘾。研究队列为中国西北地区一所大学的 977 名大学生。在大学第一年,使用中国大学生心理健康量表(CCSMHS)和中国大学生适应量表(CCSAS)评估学生的心理健康状况和适应水平。在接下来的 1-3 年内,使用 Young 的 8 项诊断问卷确定了 62 名网络成瘾者。对照组根据人口统计学特征进行匹配。使用逻辑回归分析发现,大一心理健康状况,包括躯体化、焦虑、抑郁和自卑等因素,以及大一适应问题是网络成瘾的原因和预测因素。具有抑郁、学习适应不良和不满特征的大一学生可能是减少网络成瘾的一个重要目标干预人群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验