Saier M H, Wentzel D L, Feucht B U, Judice J J
J Biol Chem. 1975 Jul 10;250(13):5089-96.
Salmonella typhimurium strain LT-2 was found to utilize phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate as sole sources of carbon and energy for growth, but Escherichia coli strains did not. The following evidence suggests that this growth difference was due to the presence in Salmonella cells of an inducible phosphoglycerate permease distinct from previously studied transport systems: (a) The ability of cells to take up 3-phospho[14-C]glycerate was induced by growth in the presence of phosphoenolpyruvate, 2-phosphoglycerate, or 3-phosphoglycerate, but not glycerate, alpha-glycerophosphate, or other carbon sources tested. (b) Uptake of 3-phospho[14-C]glycerate was strongly inhibited by the three nonradioactive inducers of 3-phosphoglycerate uptake, but not by glycerate or alpha-glycerophosphate. (c) Mutants which lost the ability to utilize and take up 3-phosphoglycerate simultaneously lost the ability to utilize 2-phosphoglycerate and phosphoenolpyruvate, but not other compounds tested. (d) Mutant strains which constitutively synthesized the phosphoglycerate transport system could use both phosphoglycerates and phosphoenolpyruvate as sole sources of phosphate at low substrate concentrations. (e) A strain lacking alkaline and acid phosphatases could still grow with 3-phosphoglycerate as sole carbon source. Maximal rates of 3-phospho[14-C]glycerate uptake occurred at pH 6 in the presence of an exogenous energy source. The apparent Km for 3-phosphoglycerate uptake under these conditions was about 10-minus 4 M. The maximal uptake rate (but not the Km) was dependent on potassium ions. Although synthesis of the phosphoglycerate transport system appeared to be under adenosine 3:5-monophosphate control, glucose repressed induction only slightly. The genes controlling synthesis of the phosphoglycerate transport system (pgt genes) appeared to map at about 74 min on the Salmonella chromosome.
鼠伤寒沙门氏菌LT - 2菌株被发现能够利用磷酸烯醇丙酮酸、2 - 磷酸甘油酸和3 - 磷酸甘油酸作为唯一的碳源和能源进行生长,但大肠杆菌菌株则不能。以下证据表明,这种生长差异是由于沙门氏菌细胞中存在一种可诱导的磷酸甘油酸通透酶,它与先前研究的转运系统不同:(a) 细胞摄取3 - 磷酸[14 - C]甘油酸的能力可通过在磷酸烯醇丙酮酸、2 - 磷酸甘油酸或3 - 磷酸甘油酸存在下生长而诱导产生,但甘油酸、α - 甘油磷酸或其他测试的碳源则不能诱导。(b) 3 - 磷酸甘油酸摄取的三种非放射性诱导剂能强烈抑制3 - 磷酸[14 - C]甘油酸的摄取,但甘油酸或α - 甘油磷酸则不能。(c) 失去利用和摄取3 - 磷酸甘油酸能力的突变体同时失去了利用2 - 磷酸甘油酸和磷酸烯醇丙酮酸的能力,但对其他测试化合物则没有影响。(d) 组成型合成磷酸甘油酸转运系统的突变菌株在低底物浓度下能够将磷酸甘油酸和磷酸烯醇丙酮酸都用作唯一的磷源。(e) 缺乏碱性和酸性磷酸酶的菌株仍能以3 - 磷酸甘油酸作为唯一碳源生长。在存在外源能源的情况下,3 - 磷酸[14 - C]甘油酸的最大摄取速率出现在pH 6时。在这些条件下,3 - 磷酸甘油酸摄取的表观Km约为10的负4次方M。最大摄取速率(但不是Km)依赖于钾离子。虽然磷酸甘油酸转运系统的合成似乎受3:5 - 环磷酸腺苷控制,但葡萄糖对诱导的抑制作用很小。控制磷酸甘油酸转运系统合成的基因(pgt基因)似乎位于沙门氏菌染色体上约74分钟处。