Suppr超能文献

鼠伤寒沙门氏菌和大肠杆菌中的葡萄糖转运

Glucose transport in Salmonella typhimurium and Escherichia coli.

作者信息

Postma P W, Neyssel O M, van Ree R

出版信息

Eur J Biochem. 1982 Mar;123(1):113-9. doi: 10.1111/j.1432-1033.1982.tb06506.x.

Abstract

We have investigated the claim by Schweiger and coworkers [Eur. J. Biochem. 102(1979)231-236] that glucose transport in Escherichia coli is catalyzed mainly by an ATP-dependent transport system instead of the phosphoenolpyruvate:sugar phosphotransferase system. A major argument was the differential effect of 2,4-dinitrophenol on glucose uptake and the transport of its non-metabolizable analogue, methyl alpha-glucoside. Whereas the first was inhibited, the second was stimulated. When subsequent glucose metabolism is prevented by introducing mutations that eliminate glucose 6-phosphate metabolism, 2,4-dinitrophenol does not inhibit glucose transport. Although dinitrophenol inhibited in wild-type cells of E. coli and Salmonella typhimurium the uptake of 14C label in cells using [U-14C]glucose as a substrate, disappearance of glucose from the medium was not affected or only slightly affected. Since uptake represents a combination of transport and subsequent metabolism, retention of labelled material depends on the balance of incorporation of label in cellular material and efflux of labelled compounds. Our experiments show that inhibition of the uptake of labelled glucose by 2,4-dinitrophenol is not due to inhibition of transport as suggested by Schweiger and coworkers, but to increased efflux of labelled compounds such as acetate and pyruvate. In addition, incorporation of label in cellular material is lowered by dinitrophenol. Inhibition of uptake by dinitrophenol is found with many labelled sugars, including mannitol, galactose and glycerol, the transport of which is energized in quite different ways. We conclude that there is no need to postulate a novel ATP-driven system for glucose transport. All results can be explained with the phosphoenolpyruvate:glucose phosphotransferase system as the main if not sole glucose transport system.

摘要

我们研究了施魏格及其同事[《欧洲生物化学杂志》102(1979)231 - 236]提出的一种观点,即大肠杆菌中的葡萄糖转运主要由一种依赖ATP的转运系统催化,而非磷酸烯醇式丙酮酸:糖磷酸转移酶系统。一个主要论据是2,4 - 二硝基苯酚对葡萄糖摄取及其不可代谢类似物α - 甲基葡萄糖苷转运的不同影响。前者受到抑制,而后者却被刺激。当通过引入消除6 - 磷酸葡萄糖代谢的突变来阻止后续葡萄糖代谢时,2,4 - 二硝基苯酚并不抑制葡萄糖转运。尽管二硝基苯酚在大肠杆菌和鼠伤寒沙门氏菌的野生型细胞中抑制了以[U - 14C]葡萄糖为底物时细胞对14C标记物的摄取,但培养基中葡萄糖的消失未受影响或仅受到轻微影响。由于摄取代表了转运和后续代谢的结合,标记物质的保留取决于标记物在细胞物质中的掺入与标记化合物流出之间的平衡。我们的实验表明,2,4 - 二硝基苯酚对标记葡萄糖摄取的抑制并非如施魏格及其同事所认为的那样是由于对转运的抑制,而是由于标记化合物如乙酸盐和丙酮酸盐流出的增加。此外,二硝基苯酚降低了标记物在细胞物质中的掺入。二硝基苯酚对许多标记糖的摄取都有抑制作用,包括甘露醇、半乳糖和甘油,它们的转运是以完全不同的方式提供能量的。我们得出结论,无需假定存在一种新型的ATP驱动的葡萄糖转运系统。所有结果都可以用磷酸烯醇式丙酮酸:葡萄糖磷酸转移酶系统来解释,即使它不是唯一的,也是主要的葡萄糖转运系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验