Sandia National Laboratories, Box 5800, MS 1137 Albuquerque, NM, USA.
J Environ Manage. 2013 Nov 15;129:103-11. doi: 10.1016/j.jenvman.2013.06.055. Epub 2013 Jul 27.
Autotrophic microalgae represent a potential feedstock for transportation fuels, but life cycle assessment (LCA) studies based on laboratory-scale or theoretical data have shown mixed results. We attempt to bridge the gap between laboratory-scale and larger scale biodiesel production by using cultivation and harvesting data from a commercial algae producer with ∼1000 m(2) production area (the base case), and compare that with a hypothetical scaled up facility of 101,000 m(2) (the future case). Extraction and separation data are from Solution Recovery Services, Inc. Conversion and combustion data are from the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET). The LCA boundaries are defined as "pond-to-wheels". Environmental impacts are quantified as NER (energy in/energy out), global warming potential, photochemical oxidation potential, water depletion, particulate matter, and total NOx and SOx. The functional unit is 1 MJ of energy produced in a passenger car. Results for the base case and the future case show an NER of 33.4 and 1.37, respectively and GWP of 2.9 and 0.18 kg CO2-equivalent, respectively. In comparison, petroleum diesel and soy diesel show an NER of 0.18 and 0.80, respectively and GWP of 0.12 and 0.025, respectively. A critical feature in this work is the low algal productivity (3 g/m(2)/day) reported by the commercial producer, relative to the much higher productivities (20-30 g/m(2)/day) reported by other sources. Notable results include a sensitivity analysis showing that algae with an oil yield of 0.75 kg oil/kg dry biomass in the future case can bring the NER down to 0.64, more comparable with petroleum diesel and soy biodiesel. An important assumption in this work is that all processes are fully co-located and that no transport of intermediate or final products from processing stage to stage is required.
自养微藻是运输燃料的潜在原料,但基于实验室规模或理论数据的生命周期评估 (LCA) 研究得出的结果喜忧参半。我们试图通过使用商业化藻类生产商的培养和收获数据(生产面积约为 1000 平方米,作为基础案例),以及与假设的 101000 平方米的放大设施(未来案例)进行对比,来弥合实验室规模和更大规模生物柴油生产之间的差距。提取和分离数据来自 Solution Recovery Services, Inc.。转化和燃烧数据来自温室气体、法规排放和运输模型中的能源使用 (GREET)。LCA 边界定义为“从池塘到车轮”。环境影响以能量输入/输出比 (NER)、全球变暖潜能值、光化学氧化潜能值、水资源枯竭、颗粒物以及总氮氧化物和硫氧化物来量化。功能单位为 1 辆乘用车生产 1 兆焦耳的能量。基础案例和未来案例的结果分别显示 NER 为 33.4 和 1.37,全球变暖潜能值分别为 2.9 和 0.18kg CO2 当量。相比之下,石油柴油和大豆柴油的 NER 分别为 0.18 和 0.80,全球变暖潜能值分别为 0.12 和 0.025。这项工作的一个关键特征是商业化生产商报告的藻类生产力较低(3g/m2/天),而其他来源报告的生产力要高得多(20-30g/m2/天)。值得注意的结果包括一项敏感性分析,表明未来案例中含油量为 0.75kg 油/kg 干生物质的藻类可以将 NER 降低至 0.64,与石油柴油和大豆生物柴油更为可比。这项工作中的一个重要假设是所有过程都完全集中,并且不需要将中间或最终产品从一个加工阶段运输到另一个阶段。