School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
J Mol Model. 2013 Oct;19(10):4283-91. doi: 10.1007/s00894-013-1939-0. Epub 2013 Jul 31.
In this work, a series of donor-acceptor (D-A) copolymers (PBDTFPD(Pa1), PBDTTPD (Pa2) and PBDTSePD(Pa3)) were selected and theoretically investigated using O3LYP/6-31G(d), PBE0/6-31G(d), TD-O3LYP/6-31G(d)//O3LYP/6-31G(d) and periodic boundary conditions methods. The calculated results go well with the available experimental data of highest occupied and lowest unoccupied molecular orbital (HOMO/LUMO) energy levels and band gaps. A series of conjugated polymers (Pb1 ~ Pb3) comprised of electron-deficient benzodithiophene and electron-rich furo-, thieno-, and selenopheno[3,4-c]thiophene-4,6-dione were further designed and studied. Compared with Pa1-Pa3, the designed polymers of Pb1 ~ Pb3 show better performances with smaller band gaps, lower HOMO energy levels, red shift of absorption spectra, and larger open circuit voltage (Voc). For investigated polymers (Pa1, Pa2, Pa3, Pb1, Pb2, Pb3), the power conversion efficiencies (PCEs) of ~6.1 %, ~7.2 %, ~7.9 %, ~8.0 %, ~9.5 % and ~9.0 % are predicted by Scharber diagrams when they are used in combination with PC60BM as an acceptor. The results illustrate that these designed polymers which turn the electron-withdrawing capability in D-A conjugated polymers are expected to turn into highly efficient donor materials for organic solar cells.
在这项工作中,选择了一系列给体-受体(D-A)共聚物(PBDTFPD(Pa1)、PBDTTPD (Pa2) 和 PBDTSePD(Pa3)),并用 O3LYP/6-31G(d)、PBE0/6-31G(d)、TD-O3LYP/6-31G(d)//O3LYP/6-31G(d)和周期性边界条件方法进行了理论研究。计算结果与最高占据和最低未占据分子轨道(HOMO/LUMO)能级和带隙的可用实验数据吻合较好。进一步设计并研究了一系列由富电子苯并二噻吩和缺电子呋喃、噻吩和硒吩[3,4-c]噻吩-4,6-二酮组成的共轭聚合物(Pb1Pb3)。与 Pa1-Pa3 相比,设计的聚合物 Pb1Pb3 具有更好的性能,具有更小的带隙、更低的 HOMO 能级、吸收光谱的红移和更大的开路电压(Voc)。对于所研究的聚合物(Pa1、Pa2、Pa3、Pb1、Pb2、Pb3),当它们与 PC60BM 作为受体结合使用时,Schärber 图预测其功率转换效率(PCE)约为 6.1%、7.2%、7.9%、8.0%、9.5%和 9.0%。结果表明,这些设计的聚合物将 D-A 共轭聚合物中的吸电子能力转化为高效的有机太阳能电池给体材料是有希望的。