Nugraha Mohamad I, Yarali Emre, Firdaus Yuliar, Lin Yuanbao, El-Labban Abdulrahman, Gedda Murali, Lidorikis Elefterios, Yengel Emre, Faber Hendrik, Anthopoulos Thomas D
Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece.
ACS Appl Mater Interfaces. 2020 Jul 15;12(28):31591-31600. doi: 10.1021/acsami.0c06306. Epub 2020 Jul 6.
Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO as the gate dielectric exhibit a maximum electron mobility of 0.2 cm V s, a value higher than that of control transistors (≈10 cm V s) processed via thermal annealing for 30 min at 120 °C. Replacing SiO with a polymeric dielectric improves the transistor's channel interface, leading to a significant increase in electron mobility to 3.7 cm V s. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.
可溶液处理的半导体胶体量子点(CQDs)的最新进展使其能够应用于一系列(光)电子器件中。在大多数此类研究中,器件制造几乎完全依赖于热退火来去除有机残留物并增强量子点间的电子耦合。然而,尽管热退火被广泛使用,但它是一个漫长的过程,而且其去除有机残留物的效果仍然有限。在此,我们利用氙闪光灯烧结对溶液沉积的硫化铅(PbS)量子点层进行后处理,并将其应用于n沟道薄膜晶体管(TFT)。该过程简单、快速且具有高度可扩展性,能够在保留量子限域和高沟道电流调制的同时有效去除有机残留物。以SiO作为栅极电介质的底栅、顶接触PbS量子点TFT表现出的最大电子迁移率为0.2 cm² V⁻¹ s⁻¹,该值高于在120°C下通过热退火30分钟处理的对照晶体管(≈10⁻² cm² V⁻¹ s⁻¹)。用聚合物电介质替代SiO可改善晶体管的沟道界面,使电子迁移率显著提高至3.7 cm² V⁻¹ s⁻¹。本工作突出了闪光灯退火作为一种有前景的方法用于快速制造基于PbS量子点的(光)电子器件和电路的潜力。