Suppr超能文献

主成分分析在临床步态研究中的应用:识别健康和内侧膝骨关节炎步态之间的系统差异。

Application of principal component analysis in clinical gait research: identification of systematic differences between healthy and medial knee-osteoarthritic gait.

机构信息

Mechanical Engineering, Stanford University, Stanford, CA, USA.

出版信息

J Biomech. 2013 Sep 3;46(13):2173-8. doi: 10.1016/j.jbiomech.2013.06.032. Epub 2013 Aug 1.

Abstract

For a successful completion of a movement task the motor control system has to observe a multitude of internal constraints that govern the coordination of its segments. The purpose of this study was to apply principal component (PC) analysis to detect differences in the segmental coordination between healthy subjects and patients with medial knee osteoarthritis (OA). It was hypothesized that (1) systematic differences in patterns of whole body movement would be identifiable with this method even in small sample sized groups and that (2) these differences will include compensatory movements in the OA patients in both the lower and upper body segments. Marker positions and ground reaction forces of three gait trials of 5 healthy and 5 OA participants with full body marker sets were analyzed using a principal component analysis. Group differences in the PC-scores were determined for the first 10 PC-vectors and a linear combination of those PC-vectors where differences were found defined a discriminant vector. Projecting the original trials onto this discriminant vector yielded significant group differences (t(d=8)=3.011; p=0.017) with greater upper body movement in patients with knee OA that was correlated with the medial-lateral ground reaction force. These results help to characterize the adaptation of whole-body gait patterns to knee OA in a relatively small population and may provide an improved basis for the development of interventions to modify knee load. The PC-based motion analysis offered a highly sensitive approach to identify characteristic whole body patterns of movement associated with pathological gait.

摘要

为了成功完成运动任务,运动控制系统必须观察到许多内部约束条件,这些约束条件支配着其各部分的协调。本研究的目的是应用主成分(PC)分析来检测健康受试者和内侧膝骨关节炎(OA)患者之间的节段协调差异。假设(1)即使在小样本量组中,该方法也能识别出整个身体运动模式的系统差异,并且(2)这些差异将包括 OA 患者在上下身体节段的代偿运动。使用主成分分析对 5 名健康受试者和 5 名 OA 患者的 3 次步态试验的标记位置和地面反力进行了分析。对于前 10 个 PC 向量和发现差异的那些 PC 向量的线性组合,确定了 PC 得分的组间差异,并定义了一个判别向量。将原始试验投射到这个判别向量上,得到了显著的组间差异(t(d=8)=3.011;p=0.017),OA 患者的上半身运动增加,与内侧-外侧地面反力相关。这些结果有助于描述膝关节 OA 对整个身体步态模式的适应,并且可能为开发改变膝关节负荷的干预措施提供更好的基础。基于 PC 的运动分析提供了一种高度敏感的方法来识别与病理性步态相关的特征性整体运动模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验