Suppr超能文献

使用参数和非参数模型分析静脉葡萄糖耐量试验数据:应用于糖尿病高危人群。

Analysis of intravenous glucose tolerance test data using parametric and nonparametric modeling: application to a population at risk for diabetes.

作者信息

Marmarelis Vasilis Z, Shin Dae C, Zhang Yaping, Kautzky-Willer Alexandra, Pacini Giovanni, D'Argenio David Z

机构信息

Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

J Diabetes Sci Technol. 2013 Jul 1;7(4):952-62. doi: 10.1177/193229681300700417.

Abstract

BACKGROUND

Modeling studies of the insulin-glucose relationship have mainly utilized parametric models, most notably the minimal model (MM) of glucose disappearance. This article presents results from the comparative analysis of the parametric MM and a nonparametric Laguerre based Volterra Model (LVM) applied to the analysis of insulin modified (IM) intravenous glucose tolerance test (IVGTT) data from a clinical study of gestational diabetes mellitus (GDM).

METHODS

An IM IVGTT study was performed 8 to 10 weeks postpartum in 125 women who were diagnosed with GDM during their pregnancy [population at risk of developing diabetes (PRD)] and in 39 control women with normal pregnancies (control subjects). The measured plasma glucose and insulin from the IM IVGTT in each group were analyzed via a population analysis approach to estimate the insulin sensitivity parameter of the parametric MM. In the nonparametric LVM analysis, the glucose and insulin data were used to calculate the first-order kernel, from which a diagnostic scalar index representing the integrated effect of insulin on glucose was derived.

RESULTS

Both the parametric MM and nonparametric LVM describe the glucose concentration data in each group with good fidelity, with an improved measured versus predicted r² value for the LVM of 0.99 versus 0.97 for the MM analysis in the PRD. However, application of the respective diagnostic indices of the two methods does result in a different classification of 20% of the individuals in the PRD.

CONCLUSIONS

It was found that the data based nonparametric LVM revealed additional insights about the manner in which infused insulin affects blood glucose concentration.

摘要

背景

胰岛素 - 葡萄糖关系的建模研究主要使用参数模型,最著名的是葡萄糖消失的最小模型(MM)。本文展示了对参数化MM和基于非参数拉盖尔的沃尔泰拉模型(LVM)进行比较分析的结果,该分析应用于对妊娠期糖尿病(GDM)临床研究中胰岛素修饰(IM)静脉葡萄糖耐量试验(IVGTT)数据的分析。

方法

对125名在孕期被诊断为GDM的女性[有患糖尿病风险的人群(PRD)]和39名正常妊娠的对照女性(对照受试者)在产后8至10周进行了IM IVGTT研究。通过群体分析方法对每组IM IVGTT中测得的血浆葡萄糖和胰岛素进行分析,以估计参数化MM的胰岛素敏感性参数。在非参数LVM分析中,利用葡萄糖和胰岛素数据计算一阶核函数,从中得出一个代表胰岛素对葡萄糖综合作用的诊断标量指数。

结果

参数化MM和非参数LVM都能很好地拟合每组的葡萄糖浓度数据,在PRD中,LVM的测量值与预测值的r²值为0.99,优于MM分析的0.97。然而,应用这两种方法各自的诊断指数确实导致PRD中20%的个体分类不同。

结论

发现基于数据的非参数LVM揭示了关于输注胰岛素影响血糖浓度方式的更多见解。

相似文献

本文引用的文献

9
Coefficients of normal blood glucose regulation.正常血糖调节系数
J Appl Physiol. 1961 Sep;16:783-8. doi: 10.1152/jappl.1961.16.5.783.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验