Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
Nat Nanotechnol. 2013 Aug;8(8):569-74. doi: 10.1038/nnano.2013.143. Epub 2013 Aug 4.
The ability to tune local parameters of quantum Hamiltonians has been demonstrated in experimental systems including ultracold atoms, trapped ions, superconducting circuits and photonic crystals. Such systems possess negligible disorder, enabling local tunability. Conversely, in condensed-matter systems, electrons are subject to disorder, which often destroys delicate correlated phases and precludes local tunability. The realization of a disorder-free and locally-tunable condensed-matter system thus remains an outstanding challenge. Here, we demonstrate a new technique for deterministic creation of locally-tunable, ultralow-disorder electron systems in carbon nanotubes suspended over complex electronic circuits. Using transport experiments we show that electrons can be localized at any position along the nanotube and that the confinement potential can be smoothly moved from location to location. The high mirror symmetry of transport characteristics about the nanotube centre establishes the negligible effects of electronic disorder, thus allowing experiments in precision-engineered one-dimensional potentials. We further demonstrate the ability to position multiple nanotubes at chosen separations, generalizing these devices to coupled one-dimensional systems. These capabilities could enable many novel experiments on electronics, mechanics and spins in one dimension.
在包括超冷原子、囚禁离子、超导电路和光子晶体在内的实验系统中,已经展示了对量子哈密顿量局部参数进行调节的能力。这些系统具有可以忽略的无序性,从而实现局部可调性。相反,在凝聚态物质系统中,电子会受到无序的影响,这往往会破坏精细的关联相,并阻止局部可调性。因此,实现无无序且可局部调节的凝聚态物质系统仍然是一个悬而未决的挑战。在这里,我们展示了一种在悬浮于复杂电子电路上的碳纳米管中确定性地创建局部可调谐、超低无序电子系统的新技术。通过传输实验,我们表明电子可以在纳米管的任意位置被局域化,并且可以将约束势平滑地从一个位置移动到另一个位置。关于纳米管中心的传输特性的高镜面对称性确立了电子无序的可以忽略不计的影响,从而允许在精密设计的一维势中进行实验。我们进一步展示了在选定的分离处定位多个纳米管的能力,从而将这些器件推广到耦合的一维系统。这些功能可以实现一维电子、力学和自旋方面的许多新实验。