Suppr超能文献

线粒体活性氧:哪种 ROS 信号可发挥心脏保护作用?

Mitochondrial reactive oxygen species: which ROS signals cardioprotection?

机构信息

Department of Biology, Portland State University, Portland, Oregon; and.

出版信息

Am J Physiol Heart Circ Physiol. 2013 Oct 1;305(7):H960-8. doi: 10.1152/ajpheart.00858.2012. Epub 2013 Aug 2.

Abstract

Mitochondria are the major effectors of cardioprotection by procedures that open the mitochondrial ATP-sensitive potassium channel (mitoKATP), including ischemic and pharmacological preconditioning. MitoKATP opening leads to increased reactive oxygen species (ROS), which then activate a mitoKATP-associated PKCε, which phosphorylates mitoKATP and leaves it in a persistent open state (Costa AD, Garlid KD. Am J Physiol Heart Circ Physiol 295, H874-H882, 2008). The ROS responsible for this effect is not known. The present study focuses on superoxide (O2(·-)), hydrogen peroxide (H2O2), and hydroxyl radical (HO(·)), each of which has been proposed as the signaling ROS. Feedback activation of mitoKATP provides an ideal setting for studying endogenous ROS signaling. Respiring rat heart mitochondria were preincubated with ATP and diazoxide, together with an agent being tested for interference with this process, either by scavenging ROS or by blocking ROS transformations. The mitochondria were then assayed to determine whether or not the persistent phosphorylated open state was achieved. Dimethylsulfoxide (DMSO), dimethylformamide (DMF), deferoxamine, Trolox, and bromoenol lactone each interfered with formation of the ROS-dependent open state. Catalase did not interfere with this step. We also found that DMF blocked cardioprotection by both ischemic preconditioning and diazoxide. The lack of a catalase effect and the inhibitory effects of agents acting downstream of HO(·) excludes H2O2 as the endogenous signaling ROS. Taken together, the results support the conclusion that the ROS message is carried by a downstream product of HO(·) and that it is probably a product of phospholipid oxidation.

摘要

线粒体是通过开放线粒体 ATP 敏感性钾通道(mitoKATP)的程序实现心脏保护的主要效应器,包括缺血和药物预处理。mitoKATP 的开放导致活性氧物质(ROS)增加,然后激活与 mitoKATP 相关的蛋白激酶 Cε(PKCε),使 mitoKATP 磷酸化并使其处于持续开放状态(Costa AD,Garlid KD. Am J Physiol Heart Circ Physiol 295,H874-H882,2008)。负责这种效应的 ROS 尚不清楚。本研究集中于超氧阴离子(O2(·-))、过氧化氢(H2O2)和羟基自由基(HO(·)),它们都被提议作为信号 ROS。mitoKATP 的反馈激活为研究内源性 ROS 信号提供了一个理想的环境。用 ATP 和二氮嗪预孵育呼吸大鼠心脏线粒体,并与一种被测试的试剂一起孵育,该试剂通过清除 ROS 或阻断 ROS 转化来干扰这个过程。然后测定线粒体是否达到持续磷酸化的开放状态。二甲亚砜(DMSO)、二甲基甲酰胺(DMF)、去铁胺、Trolox 和溴烯醇内酯都干扰了 ROS 依赖性开放状态的形成。过氧化氢酶不干扰这一步骤。我们还发现 DMF 阻断了缺血预处理和二氮嗪的心脏保护作用。缺乏过氧化氢酶的作用以及 HO(·)下游的试剂的抑制作用排除了 H2O2 作为内源性信号 ROS。综上所述,这些结果支持这样的结论,即 ROS 信号由 HO(·)的下游产物携带,它可能是磷脂氧化的产物。

相似文献

1
Mitochondrial reactive oxygen species: which ROS signals cardioprotection?线粒体活性氧:哪种 ROS 信号可发挥心脏保护作用?
Am J Physiol Heart Circ Physiol. 2013 Oct 1;305(7):H960-8. doi: 10.1152/ajpheart.00858.2012. Epub 2013 Aug 2.
10
Mitochondria "THE" target of myocardial conditioning.线粒体是心肌预处理的“靶点”。
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1215-H1231. doi: 10.1152/ajpheart.00124.2018. Epub 2018 Jul 13.

引用本文的文献

本文引用的文献

1
Mitochondrial ROMK channel is a molecular component of mitoK(ATP).线粒体 ROMK 通道是 mitoK(ATP)的分子组成部分。
Circ Res. 2012 Aug 3;111(4):446-54. doi: 10.1161/CIRCRESAHA.112.266445. Epub 2012 Jul 17.
2
The mitochondrial K(ATP) channel--fact or fiction?线粒体 K(ATP) 通道——事实还是虚构?
J Mol Cell Cardiol. 2012 Mar;52(3):578-83. doi: 10.1016/j.yjmcc.2011.12.011. Epub 2012 Jan 2.
5
Redox regulation of the mitochondrial K(ATP) channel in cardioprotection.心脏保护中线粒体K(ATP)通道的氧化还原调节
Biochim Biophys Acta. 2011 Jul;1813(7):1309-15. doi: 10.1016/j.bbamcr.2010.11.005. Epub 2010 Nov 20.
7
Cardioprotective signaling to mitochondria.对线粒体的心脏保护信号传导
J Mol Cell Cardiol. 2009 Jun;46(6):858-66. doi: 10.1016/j.yjmcc.2008.11.019. Epub 2008 Dec 11.
8
How mitochondria produce reactive oxygen species.线粒体如何产生活性氧物种。
Biochem J. 2009 Jan 1;417(1):1-13. doi: 10.1042/BJ20081386.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验