Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States.
Mutat Res. 2013 Oct;750(1-2):5-14. doi: 10.1016/j.mrfmmm.2013.07.007. Epub 2013 Jul 31.
Chromosomal double strand breaks provoke an extensive reaction in neighboring chromatin, characterized by phosphorylation of histone H2AX on serine 139 of its C-terminal tail (to form "γH2AX"). The γH2AX response contributes to the repair of double strand breaks encountered in a variety of different contexts, including those induced by ionizing radiation, physiologically programmed breaks that characterize normal immune cell development and the pathological exposure of DNA ends triggered by telomere dysfunction. γH2AX also participates in the evolutionarily conserved process of sister chromatid recombination, a homologous recombination pathway involved in the suppression of genomic instability during DNA replication and directly implicated in tumor suppression. At a biochemical level, the γH2AX response provides a compelling example of how the "histone code" is adapted to the regulation of double strand break repair. Here, we review progress in research aimed at understanding how γH2AX contributes to double strand break repair in mammalian cells.
染色体双链断裂会引发邻近染色质的广泛反应,其特征是组蛋白 H2AX 丝氨酸 139 位的 C 端尾部发生磷酸化(形成“γH2AX”)。γH2AX 反应有助于修复各种不同情况下遇到的双链断裂,包括电离辐射诱导的双链断裂、正常免疫细胞发育过程中生理性程序化的双链断裂以及端粒功能障碍引发的 DNA 末端病理性暴露。γH2AX 还参与姐妹染色单体重组这一进化上保守的过程,该过程涉及同源重组途径,有助于在 DNA 复制过程中抑制基因组不稳定性,并直接参与肿瘤抑制。从生化角度来看,γH2AX 反应为“组蛋白密码”如何适应双链断裂修复的调控提供了一个很好的例证。在此,我们综述了旨在了解 γH2AX 如何促进哺乳动物细胞双链断裂修复的研究进展。