Suppr超能文献

基于审前脑电图的单次试验运动表现预测,以增强手部力量任务的神经工效学

Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task.

作者信息

Meinel Andreas, Castaño-Candamil Sebastián, Reis Janine, Tangermann Michael

机构信息

Brain State Decoding Lab, Cluster of Excellence BrainLinks-BrainTools, Department of Computer Science, Albert-Ludwigs-University Freiburg, Germany.

Department of Neurology, Albert-Ludwigs-University Freiburg, Germany.

出版信息

Front Hum Neurosci. 2016 Apr 25;10:170. doi: 10.3389/fnhum.2016.00170. eCollection 2016.

Abstract

We propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories. The behavioral data showed strong trial-by-trial performance variations for five clinically relevant metrics, which accounted for reaction time as well as for the smoothness and precision of the produced force trajectory. 18 out of 20 tested subjects remained after preprocessing and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG data of a short time interval prior to the start of each SVIPT trial. For 11 subjects, SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity are predictive for the performance of the upcoming trial. Since SPoC may overfit to non-informative subspaces, we propose to apply three selection criteria accounting for the meaningfulness of the features. Across all subjects, the obtained components were spread along the frequency spectrum and showed a variety of spatial activity patterns. Those containing the highest level of predictive information resided in and close to the alpha band. Their spatial patterns resemble topologies reported for visual attention processes as well as those of imagined or executed hand motor tasks. In summary, we identified subject-specific single predictors that explain up to 36% of the performance fluctuations and may serve for enhancing neuroergonomics of motor rehabilitation scenarios.

摘要

我们提出了一个用于构建单次试验运动表现变化的电生理预测器的框架,以SVIPT为例进行说明,SVIPT是一项适用于中风后手运动康复的顺序等长力控制任务。在400次SVIPT试验之前和期间,记录了20名平均年龄为53岁的受试者的脑电图(EEG)数据。这些试验在一个疗程内用非优势左手进行,同时接收所产生力轨迹的连续视觉反馈。行为数据显示,在五个临床相关指标上,每次试验的表现都有很大差异,这些指标包括反应时间以及所产生力轨迹的平滑度和精度。经过预处理后,20名受试对象中有18名留下来进行离线分析。在每次SVIPT试验开始前的短时间间隔内,对EEG数据应用源功率共调制(SPoC)。对于11名受试者,SPoC揭示了强大且振荡的EEG子空间成分,其带功率活动可预测即将进行的试验的表现。由于SPoC可能会过度拟合到无信息的子空间,我们建议应用三个选择标准来考虑特征的意义。在所有受试者中,获得的成分分布在整个频谱上,并显示出各种空间活动模式。那些包含最高水平预测信息的成分位于α波段及其附近。它们的空间模式类似于视觉注意过程以及想象或执行的手部运动任务所报告的拓扑结构。总之,我们确定了特定于受试者的单个预测器,这些预测器可以解释高达36%的表现波动,并可能有助于增强运动康复场景的神经工效学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d45f/4843706/9670abcfd616/fnhum-10-00170-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验