Suppr超能文献

植物拟南芥对强光响应的早期阶段所需的热休克转录因子亚群。

Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light.

机构信息

Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14474-9. doi: 10.1073/pnas.1311632110. Epub 2013 Aug 5.

Abstract

Sunlight provides energy for photosynthesis and is essential for nearly all life on earth. However, too much or too little light or rapidly fluctuating light conditions cause stress to plants. Rapid changes in the amount of light are perceived as a change in the reduced/oxidized (redox) state of photosynthetic electron transport components in chloroplasts. However, how this generates a signal that is relayed to changes in nuclear gene expression is not well understood. We modified redox state in the reference plant, Arabidopsis thaliana, using either excess light or low light plus the herbicide DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), a well-known inhibitor of photosynthetic electron transport. Modification of redox state caused a change in expression of a common set of about 750 genes, many of which are known stress-responsive genes. Among the most highly enriched promoter elements in the induced gene set were heat-shock elements (HSEs), known motifs that change gene expression in response to high temperature in many systems. We show that HSEs from the promoter of the ASCORBATE PEROXIDASE 2 (APX2) gene were necessary and sufficient for APX2 expression in conditions of excess light, or under low light plus the herbicide. We tested APX2 expression phenotypes in overexpression and loss-of-function mutants of 15 Arabidopsis A-type heat-shock transcription factors (HSFs), and identified HSFA1D, HSFA2, and HSFA3 as key factors regulating APX2 expression in diverse stress conditions. Excess light regulates both the subcellular location of HSFA1D and its biochemical properties, making it a key early component of the excess light stress network of plants.

摘要

阳光为光合作用提供能量,对地球上几乎所有生命都是必不可少的。然而,过多或过少的光或快速波动的光照条件会给植物带来压力。光照量的快速变化被感知为叶绿体光合电子传递组分的还原/氧化(redox)状态的变化。然而,这种变化如何产生一个信号,从而传递到核基因表达的变化,目前还不是很清楚。我们使用过量的光或低光加除草剂 DBMIB(2,5-二溴-3-甲基-6-异丙基-p-苯醌)来修饰参考植物拟南芥的氧化还原状态,DBMIB 是一种众所周知的光合电子传递抑制剂。氧化还原状态的修饰导致大约 750 个共同表达基因的表达发生变化,其中许多是已知的应激响应基因。在诱导基因集中,最丰富的启动子元件之一是热休克元件(HSEs),这是许多系统中响应高温改变基因表达的已知基序。我们表明,APX2 基因启动子中的 HSE 对于过量光照或低光加除草剂条件下的 APX2 表达是必要和充分的。我们在 15 个拟南芥 A 型热休克转录因子(HSF)的过表达和功能丧失突变体中测试了 APX2 表达表型,并确定 HSFA1D、HSFA2 和 HSFA3 是调节 APX2 在各种应激条件下表达的关键因素。过量的光调节 HSFA1D 的亚细胞定位及其生化特性,使其成为植物过量光照应激网络的关键早期组成部分。

相似文献

1
Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14474-9. doi: 10.1073/pnas.1311632110. Epub 2013 Aug 5.
3
Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.
Mol Cells. 2016 Jun 30;39(6):477-83. doi: 10.14348/molcells.2016.0027. Epub 2016 Apr 25.
10
A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis.
Plant Physiol. 2007 Jan;143(1):251-62. doi: 10.1104/pp.106.091322. Epub 2006 Nov 3.

引用本文的文献

1
Genetic architecture of a light-temperature coincidence detector.
Nat Commun. 2025 Aug 26;16(1):7947. doi: 10.1038/s41467-025-62194-y.
4
Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks.
Mol Cell Proteomics. 2024 Nov;23(11):100845. doi: 10.1016/j.mcpro.2024.100845. Epub 2024 Sep 24.
5
Strategies for adaptation to high light in plants.
aBIOTECH. 2024 May 13;5(3):381-393. doi: 10.1007/s42994-024-00164-6. eCollection 2024 Sep.
6
Investigating the mechanism of chloroplast singlet oxygen signaling in the mutant.
Plant Signal Behav. 2024 Dec 31;19(1):2347783. doi: 10.1080/15592324.2024.2347783. Epub 2024 May 3.
7
Dynamics of mRNA fate during light stress and recovery: from transcription to stability and translation.
Plant J. 2024 Feb;117(3):818-839. doi: 10.1111/tpj.16531. Epub 2023 Nov 10.
8
Blue light receptor CRY1 regulates HSFA1d nuclear localization to promote plant thermotolerance.
Cell Rep. 2023 Sep 26;42(9):113117. doi: 10.1016/j.celrep.2023.113117. Epub 2023 Sep 12.
9
Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription.
J Exp Bot. 2023 Oct 13;74(19):5955-5969. doi: 10.1093/jxb/erad270.
10
Multiomics Reveals the Regulatory Mechanisms of Arabidopsis Tissues under Heat Stress.
Int J Mol Sci. 2023 Jul 4;24(13):11081. doi: 10.3390/ijms241311081.

本文引用的文献

1
Systemic and Local Responses to Repeated HL Stress-Induced Retrograde Signaling in Arabidopsis.
Front Plant Sci. 2013 Jan 17;3:303. doi: 10.3389/fpls.2012.00303. eCollection 2012.
2
Environmental control of plant nuclear gene expression by chloroplast redox signals.
Front Plant Sci. 2012 Nov 19;3:257. doi: 10.3389/fpls.2012.00257. eCollection 2012.
4
Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5535-40. doi: 10.1073/pnas.1115982109. Epub 2012 Mar 19.
5
Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases.
Nat Rev Drug Discov. 2011 Dec 1;10(12):930-44. doi: 10.1038/nrd3453.
6
Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis.
Plant Cell. 2011 Nov;23(11):3992-4012. doi: 10.1105/tpc.111.091033. Epub 2011 Nov 29.
7
The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells.
Plant Cell. 2009 Jul;21(7):2143-62. doi: 10.1105/tpc.108.061507. Epub 2009 Jul 28.
8
Sensing and responding to excess light.
Annu Rev Plant Biol. 2009;60:239-60. doi: 10.1146/annurev.arplant.58.032806.103844.
9
Plastid signalling to the nucleus and beyond.
Trends Plant Sci. 2008 Nov;13(11):602-9. doi: 10.1016/j.tplants.2008.08.008. Epub 2008 Oct 1.
10
Redox signal integration: from stimulus to networks and genes.
Physiol Plant. 2008 Jul;133(3):459-68. doi: 10.1111/j.1399-3054.2008.01120.x. Epub 2008 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验