Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
J Mol Biol. 2013 Nov 1;425(21):4023-33. doi: 10.1016/j.jmb.2013.07.037. Epub 2013 Aug 3.
A fundamental goal of medical genetics is the accurate prediction of genotype-phenotype correlations. As an approach to develop more accurate in silico tools for prediction of disease-causing mutations of structural proteins, we present a gene- and disease-specific prediction tool based on a large systematic analysis of missense mutations from hemophilia A (HA) patients. Our HA-specific prediction tool, HApredictor, showed disease prediction accuracy comparable to other publicly available prediction software. In contrast to those methods, its performance is not limited to non-synonymous mutations. Given the role of synonymous mutations in disease and drug codon optimization, we propose that utilizing a gene- and disease-specific method can be highly useful to make functional predictions possible even for synonymous mutations. Incorporating computational metrics at both nucleotide and amino acid levels along with multiple protein sequence/structure alignment significantly improved the predictive performance of our tool. HApredictor is freely available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/HA_Predict/index.htm.
医学遗传学的一个基本目标是准确预测基因型-表型相关性。作为开发更准确的计算工具来预测结构蛋白致病变异的方法,我们提出了一种基于对血友病 A (HA) 患者的错义突变进行大规模系统分析的基因和疾病特异性预测工具。我们的 HA 特异性预测工具 HApredictor 显示出与其他可用的预测软件相当的疾病预测准确性。与这些方法不同,其性能不受限于非同义突变。鉴于同义突变在疾病和药物密码子优化中的作用,我们提出,即使对于同义突变,使用基因和疾病特异性方法也可以非常有助于实现功能预测。在核苷酸和氨基酸水平上结合计算指标以及多个蛋白质序列/结构比对显著提高了我们工具的预测性能。HApredictor 可在 http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/HA_Predict/index.htm 免费下载。