Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas; and.
Physiol Genomics. 2013 Oct 1;45(19):889-900. doi: 10.1152/physiolgenomics.00050.2013. Epub 2013 Aug 6.
Human and animal studies show that suboptimal intrauterine environments lead to fetal programming, predisposing offspring to disease in later life. Maternal obesity has been shown to program offspring for cardiovascular disease (CVD), diabetes, and obesity. MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of cardiac development and etiology of cardiac pathology; however, little is known about their role in the fetal cardiac response to maternal obesity. Our aim was to sequence and profile the cardiac miRNAs that are dysregulated in the hearts of baboon fetuses born to high fat/high fructose-diet (HFD) fed mothers for comparison with fetal hearts from mothers eating a regular diet. Eighty miRNAs were differentially expressed. Of those, 55 miRNAs were upregulated and 25 downregulated with HFD. Twenty-two miRNAs were mapped to human; 14 of these miRNAs were previously reported to be dysregulated in experimental or human CVD. We used an Ingenuity Pathway Analysis to integrate miRNA profiling and bioinformatics predictions to determine miRNA-regulated processes and genes potentially involved in fetal programming. We found a correlation between miRNA expression and putative gene targets involved in developmental disorders and CVD. Cellular death, growth, and proliferation were the most affected cellular functions in response to maternal obesity. Thus, the current study reveals significant alterations in cardiac miRNA expression in the fetus of obese baboons. The epigenetic modifications caused by adverse prenatal environment may represent one of the mechanisms underlying fetal programming of CVD.
人体和动物研究表明,宫内环境不佳会导致胎儿编程,使后代在以后的生活中易患疾病。肥胖母亲已被证明会使后代易患心血管疾病 (CVD)、糖尿病和肥胖症。microRNAs (miRNAs) 是一种小型非编码 RNA 分子,可作为许多细胞过程的关键调节剂。有强有力的证据表明 miRNAs 与心脏发育的控制和心脏病理学的病因有关;然而,关于它们在胎儿对母体肥胖的心脏反应中的作用知之甚少。我们的目的是对食高脂肪/高果糖饮食 (HFD) 的母猴所生胎儿心脏中失调的心脏 miRNA 进行测序和分析,以便与食用常规饮食的胎儿心脏进行比较。有 80 个 miRNA 表达失调。其中,55 个 miRNA 上调,25 个 miRNA 下调。有 22 个 miRNA 被映射到人类;其中 14 个 miRNA 之前在实验或人类 CVD 中被报道失调。我们使用 Ingenuity Pathway Analysis 将 miRNA 分析和生物信息学预测相结合,以确定 miRNA 调节的过程和可能参与胎儿编程的基因。我们发现 miRNA 表达与发育障碍和 CVD 相关的假定基因靶标之间存在相关性。细胞死亡、生长和增殖是对母体肥胖反应最受影响的细胞功能。因此,目前的研究揭示了肥胖狨猴胎儿心脏中 miRNA 表达的显著改变。不利的产前环境引起的表观遗传修饰可能是 CVD 胎儿编程的机制之一。