Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR6302, 9, Avenue Alain Savary, 21000 Dijon (France), Fax: (+33) 380-396-117.
Chemistry. 2013 Sep 16;19(38):12739-47. doi: 10.1002/chem.201300791. Epub 2013 Aug 6.
Natural G-quartets, a cyclic and coplanar array of four guanine residues held together through a Watson-Crick/Hoogsteen hydrogen-bond network, have received recently much attention due to their involvement in G-quadruplex DNA, an alternative higher-order DNA structure strongly suspected to play important roles in key cellular events. Besides this, synthetic G-quartets (SQ), which artificially mimic native G-quartets, have also been widely studied for their involvement in nanotechnological applications (i.e., nanowires, artificial ion channels, etc.). In contrast, intramolecular synthetic G-quartets (iSQ), also named template-assembled synthetic G-quartets (TASQ), have been more sparingly investigated, despite a technological potential just as interesting. Herein, we report on a particular iSQ named (PNA) DOTASQ, which demonstrates very interesting properties in terms of DNA and RNA interaction (notably its selective recognition of quadruplexes according to a bioinspired process) and catalytic activities, through its ability to perform peroxidase-like hemin-mediated oxidations either in an autonomous fashion (i.e., as pre-catalyst for TASQzyme reactions) or in conjunction with quadruplex DNA (i.e., as enhancing agents for DNAzyme processes). These results provide a solid scientific basis for TASQ to be used as multitasking tools for bionanotechnological applications.
天然 G-四联体是由四个鸟嘌呤碱基通过沃森-克里克/霍格斯坦氢键网络形成的环状共面阵列,由于其参与 G-四链体 DNA,一种强烈怀疑在关键细胞事件中发挥重要作用的替代高级 DNA 结构,最近受到了广泛关注。此外,合成 G-四联体 (SQ) 人工模拟天然 G-四联体,也因其在纳米技术应用(例如纳米线、人工离子通道等)中的应用而得到广泛研究。相比之下,尽管具有同样有趣的技术潜力,但分子内合成 G-四联体 (iSQ),也称为模板组装合成 G-四联体 (TASQ),研究得较少。在此,我们报告了一种特殊的 iSQ,名为 (PNA) DOTASQ,它在 DNA 和 RNA 相互作用(特别是根据仿生过程对四联体的选择性识别)和催化活性方面表现出非常有趣的特性,通过其能够以自主方式(即作为 TASQzyme 反应的预催化剂)或与四链体 DNA 结合(即作为 DNAzyme 过程的增强剂)进行过氧化物酶样血红素介导的氧化。这些结果为 TASQ 作为生物纳米技术应用的多任务工具提供了坚实的科学基础。