UC Davis Genome Center, University of California Davis, Davis, California, United States of America.
PLoS One. 2013 Jul 29;8(7):e69882. doi: 10.1371/journal.pone.0069882. Print 2013.
In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB) are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond switches from a cytoplasmic facing (13-cis, 15-anti) configuration to an extracellular facing (13-cis, 15-syn) configuration on the pico to nanosecond timescale. Significantly, rotation about the retinal's C13 = C14 double bond is not observed. The dynamics of the isomeric state transitions of the protonated SB are strongly influenced by the surrounding charges and dielectric effects of other buried ions, particularly D96 and D212. Our simulations indicate that the thermal isomerization of retinal from 13-cis back to all-trans likely occurs independently from and after the SB C15 = NZ rotation in the N-to-O transition.
在菌紫质中,控制席夫碱(SB)细胞质或细胞外可及性的分子事件的顺序尚不清楚。我们使用分子动力学模拟研究了参与 SB 第二次可及性开关的过程,该开关发生在光循环的 N 中间态中 SB 的再质子化之后。我们发现,一旦质子化,SB 的 C15=NZ 键就会在皮秒到纳秒的时间尺度内从细胞质面向(13-顺式,15-反式)构型切换到细胞外面向(13-顺式,15-顺式)构型。重要的是,没有观察到视黄醛的 C13=C14 双键的旋转。质子化 SB 的异构态跃迁的动力学受到周围电荷和其他埋藏离子(特别是 D96 和 D212)的介电效应的强烈影响。我们的模拟表明,从 13-顺式回到全反式的视黄醛热异构化可能独立于并在 N 到 O 跃迁中的 SB C15=NZ 旋转之后发生。